Skip to main content

Advertisement

Log in

Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The slip systems for B1 MX compounds (M=Ti, Zr, Hf, V, Nb, Ta and X=C, N) have been studied extensively both experimentally and computationally as they influence the materials mechanical behavior at both high and low temperatures. Despite many investigations, the differences in observed slip systems, either \(\{111\}\) or \(\{110\}\), in these materials remain an open question. In this paper, the factors that may determine the slip preference of these compounds have been studied based on the results from first principle calculations. The generalized stacking fault surfaces for all of the materials were computed and used to provide a more comprehensive understanding of slip plane choices. Through analysis of this data, it is found that among different indicators of slip, the normalized splitting width and the intrinsic stacking fault energy are the most useful indicators of the choice of slip planes in these materials. In addition, these indicators of slip are controlled by the structural energy differences between the B1 and tungsten carbides structures, which are correlated well with the number of valence electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wuchina E, Opila E, Opeka M, Fahrenholtz W, Talmy I (2007) UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Electrochem Soc Interface 16:30

    Google Scholar 

  2. Fahrenholtz WG, Wuchina EJ, Lee WE, Zhou Y (2014) Ultra-high temperature ceramics: materials for extreme environment applications. Wiley, New York

    Book  Google Scholar 

  3. Dieter GE, Bacon DJ (1986) Mechanical metallurgy, vol 3. McGraw-Hill, New York

    Google Scholar 

  4. Rv Mises (1928) Mechanik der plastischen formänderung von kristallen. Z Angew Math Mech 8:161–185

    Article  Google Scholar 

  5. Hollox G, Smallman R (1966) Plastic behavior of titanium carbide. J Appl Phys 37:818–823

    Article  Google Scholar 

  6. Hannink R, Kohlstedt D, Murray M (1972) Slip system determination in cubic carbides by hardness anisotropy. Proc R Soc Lond A Math Phys Eng Sci 326:409–420

    Article  Google Scholar 

  7. Kumashiro Y, Itoh A, Kinoshita T, Sobajima M (1977) The micro-vickers hardness of TiC single crystals up to 1500\(^{\circ }\)C. J Mater Sci 12:595–601. doi:10.1007/BF00540285

    Article  Google Scholar 

  8. Kumashiro Y, Nagai Y, Katō H, Sakuma E, Watanabe K, Misawa S (1981) The preparation and characteristics of ZrC and TaC single crystals using an r.f. floating-zone process. J Mater Sci 16:2930–2933. doi:10.1007/BF00552985

    Article  Google Scholar 

  9. Rowcliffe DJ, Hollox GE (1971) Plastic flow and fracture of tantalum carbide and hafnium carbide at low temperatures. J Mater Sci 6:1261–1269. doi:10.1007/BF00552039

    Article  Google Scholar 

  10. Lee D, Haggerty J (1969) Plasticity and creep in single crystals of zirconium carbide. J Am Ceram Soc 52:641–647

    Article  Google Scholar 

  11. Chien F, Ning X, Heuer A (1996) Slip systems and dislocation emission from crack tips in single crystal TiC at low temperatures. Acta Mater 44:2265–2283

    Article  Google Scholar 

  12. Chatterjee D, Mendiratta M, Lipsitt H (1979) Deformation behaviour of single crystals of titanium carbide. J Mater Sci 14:2151–2156. doi:10.1007/BF00688420

    Article  Google Scholar 

  13. Kumashiro Y, Sakuma E (1980) The vickers micro-hardness of non-stoichiometric niobium carbide and vanadium carbide single crystals up to 1500\(^{\circ }\)C. J Mater Sci 15:1321–1324. doi:10.1007/BF00551827

    Article  Google Scholar 

  14. Morgan G, Lewis M (1974) Hardness anisotropy in niobium carbide. J Mater Sci 9:349–358. doi:10.1007/BF00737834

    Article  Google Scholar 

  15. De Leon N, Yu Xx YuH, Weinberger CR, Thompson GB (2015) Bonding effects on the slip differences in the B1 monocarbides. Phys Rev Lett 114:165502

    Article  Google Scholar 

  16. Hultman L, Shinn M, Mirkarimi P, Barnett S (1994) Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti, Nb)N film heterostructures by transmission electron microscopy. J Cryst Growth 135:309–317

    Article  Google Scholar 

  17. Odén M, Ljungcrantz H, Hultman L (1997) Characterization of the induced plastic zone in a single crystal TiN (001) film by nanoindentation and transmission electron microscopy. J Mater Res 12:2134–2142

    Article  Google Scholar 

  18. Li N, Yadav S, Liu XY, Wang J, Hoagland R, Mara N, Misra A (2015) Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations. Sci Rep 5:15813

    Article  Google Scholar 

  19. Vahldiek F, Mersol S (1977) Slip and microhardness of IVa to VIa refractory materials. J. Less Common Metals 55:265–278

    Article  Google Scholar 

  20. Li P, Howe J (2002) Dislocation reactions in ZrN. Acta Mater 50:4231–4239

    Article  Google Scholar 

  21. Vinson K, Yu XX, De Leon N, Weinberger CR, Thompson GB (2016) Plasticity mechanisms in HfN at elevated and room temperature. Sci Rep 6:34571

    Article  Google Scholar 

  22. Zhang R, Sheng S, Veprek S (2013) Origin of different plastic resistance of transition metal nitrides and carbides: Stiffer yet softer. Scripta Mater 68:913–916

    Article  Google Scholar 

  23. Sangiovanni DG, Hultman L, Chirita V (2011) Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater 59:2121–2134

    Article  Google Scholar 

  24. Li T, Morris J Jr, Nagasako N, Kuramoto S, Chrzan D (2007) Ideal engineering alloys. Phys Rev Lett 98:105503

    Article  Google Scholar 

  25. Holleck H (1986) Material selection for hard coatings. J Vac Sci Technol A 4:2661–2669

    Article  Google Scholar 

  26. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561

    Article  Google Scholar 

  27. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269

    Article  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  30. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  31. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  33. Abbena E, Salamon S, Gray A (2006) Modern differential geometry of curves and surfaces with mathematica. CRC Press, Cambridge

    Google Scholar 

  34. Tsukimoto S, Moriyama M, Murakami M (2004) Microstructure of amorphous tantalum nitride thin films. Thin Solid Films 460:222–226

    Article  Google Scholar 

  35. Van Der Walt CM, Sole M (1967) On the plastic behaviour of crystals with the nacl-structure. Acta Metall 15:459–462

    Article  Google Scholar 

  36. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matter 21:084204

    Article  Google Scholar 

  37. Jhi SH, Louie SG, Cohen ML, Ihm J (2001) Vacancy hardening and softening in transition metal carbides and nitrides. Phys Rev Lett 86:3348

    Article  Google Scholar 

  38. Wu Z, Chen XJ, Struzhkin VV, Cohen RE (2005) Trends in elasticity and electronic structure of transition-metal nitrides and carbides from first principles. Phys Rev B 71:214103

    Article  Google Scholar 

  39. Yu XX, Thompson GB, Weinberger CR (2015) Influence of carbon vacancy formation on the elastic constants and hardening mechanisms in transition metal carbides. J Eur Ceram Soc 35:95–103

    Article  Google Scholar 

  40. Vinitskii I (1972) Relation between the properties of monocarbides of groups IV-V transition metals and their carbon content. Powder Metall Metal Ceram 11:488–493

    Article  Google Scholar 

  41. Yu H, Guziewski M, Thompson GB, Weinberger CR (2016) A model for understanding the formation energies of nanolamellar phases in transition metal carbides and nitrides. Model Simul Mat Sci Eng 24:55004

    Article  Google Scholar 

  42. Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New York

    Google Scholar 

  43. Carlson O, Smith J, Nafziger R (1986) The vanadium-nitrogen system: a review. Metall Mater Trans A 17:1647–1656

    Article  Google Scholar 

  44. Brauer G (1960) Nitrides, carbonitrides and oxynitrides of niobium. J Less Common Metals 2:131–137

    Article  Google Scholar 

  45. Pierson HO (1996) Handbook of refractory carbides and nitrides; properties characteristics, processing and applications. Noyes Publications, Westwood

    Google Scholar 

  46. Ryu S, Kang K, Cai W (2011) Predicting the dislocation nucleation rate as a function of temperature and stress. J Mater Res 26:2335–2354

    Article  Google Scholar 

  47. Warner DH, Curtin W (2009) Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals. Acta Mater 57:4267–4277

    Article  Google Scholar 

  48. Kim C, Gottstein G, Grummon D (1994) Plastic flow and dislocation structures in tantalum carbide: deformation at low and intermediate homologous temperatures. Acta Metall Mater 42:2291–2301

    Article  Google Scholar 

Download references

Acknowledgements

H. Yu and C.R. Weinberger recognize Air Force Office of Scientific Research Grant FA9550-15-1-0217, Dr. Ali Sayir Program Manager. G.B. Thompson recognize Air Force Office of Scientific Research Grant FA9550-15-1-0095, Dr. Ali Sayir Program Manager. Work reported here was run on hardware supported by Drexel’s University Research Computing Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Bahadori, M., Thompson, G.B. et al. Understanding dislocation slip in stoichiometric rocksalt transition metal carbides and nitrides. J Mater Sci 52, 6235–6248 (2017). https://doi.org/10.1007/s10853-017-0857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0857-4

Keywords

Navigation