Skip to main content
Log in

Asymmetric membranes based on poly(vinyl chloride): effect of molecular weight of additive and solvent power on the morphology and performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinyl chloride) (PVC)-based asymmetric membrane was prepared by nonsolvent-induced phase separation method using N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP) as solvents. Poly(ethylene glycol) (PEG) of three different molecular weights (PEG-400, PEG-4000, PEG-20000) was used as the pore former and hydrophilic additive. Solvent effect on the phase inversion mechanism and morphology was interpreted using the Hansen solubility parameter. Effect of molecular weight of PEG additive on the morphology and performance of the membrane was systematically investigated. It was observed that the pure water flux has been increased initially (up to 236.8 ± 3.3 Lm−2 h−1) and then decreased (134.3 ± 0.7 Lm−2 h−1) with the increase in the molecular weight of PEG in the PVC/PEG/DMAc system. However, pure water flux value of PVC/PEG/NMP system progressed (61.1 ± 1.2 to 184.1 ± 3.8 Lm−2 h−1) with the rise in molecular weight of PEG. As the molecular weight of PEG increased, phase separation was enhanced, and membrane with higher porosity was formed. It was found that the shape and size of finger-like structures in the sub-layer increase with the increase in the molecular weight of PEG. Residual PEG content in the membrane also showed a positive gradation with the molecular weight of PEG, which extends the hydrophilicity of the membrane. Between the two solvents used, NMP showed better interaction with PVC than DMAc. The membranes exhibited sufficient thermal stability, mechanical strength and antifouling property suitable for ultrafiltration operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Karim Z, Claudpierre S, Grahn M et al (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428

    Article  Google Scholar 

  2. Ma W, Rajabzadeh S, Shaikh AR et al (2016) Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride) (PVDF) blend membranes. J Membr Sci 514:429–439

    Article  Google Scholar 

  3. Lin J, Ye W, Baltaru M-CC et al (2016) Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment. J Membr Sci 514:217–228

    Article  Google Scholar 

  4. Lin J, Tang CY, Huang C et al (2016) A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes. J Membr Sci 501:1–14

    Article  Google Scholar 

  5. Lin J, Ye W, Zeng H et al (2015) Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J Membr Sci 477:183–193

    Article  Google Scholar 

  6. Lin J, Tang CY, Ye W et al (2015) Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. J Membr Sci 493:690–702

    Article  Google Scholar 

  7. Lin J, Ye W, Huang J et al (2015) Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sustain Chem Eng 3:1993–2001

    Article  Google Scholar 

  8. Wang P, Ma J, Wang Z et al (2012) Enhanced separation performance of PVDF/PVP-g-MMT nanocomposite ultrafiltration membrane based on the NVP-grafted polymerization modification of montmorillonite (MMT). Langmuir 28:4776–4786

    Article  Google Scholar 

  9. Tian Z, Wang S, Wang Y et al (2016) Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. J Membr Sci 514:15–24

    Article  Google Scholar 

  10. Hosseini SS, Li Y, Chung TS, Liu Y (2007) Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. J Membr Sci 302:207–217

    Article  Google Scholar 

  11. Wienk IM, Boom RM, Beerlage MAM et al (1996) Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J Membr Sci 113:361–371

    Article  Google Scholar 

  12. Young TH, Chen LW (1995) Pore formation mechanism of membranes from phase inversion process. Desalination 103:233–247

    Article  Google Scholar 

  13. Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50:3798–3817

    Article  Google Scholar 

  14. Idris A, Yet LK (2006) The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. J Membr Sci 280:920–927

    Article  Google Scholar 

  15. Chou W, Yu D, Yang M, Jou C (2007) Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers. Sep Purif Technol 57:209–219

    Article  Google Scholar 

  16. Chakrabarty B, Ghoshal AK, Purkait MK (2008) Effect of molecular weight of PEG on membrane morphology and transport properties. J Membr Sci 309:209–221

    Article  Google Scholar 

  17. Jung B, Joon KY, Kim B et al (2004) Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes. J Membr Sci 243:45–57

    Article  Google Scholar 

  18. Yeow ML, Liu YT, Li K (2004) Morphological study of poly (vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature. J Appl Polym Sci 92:1782–1789

    Article  Google Scholar 

  19. Idris A, Mat N, Noordin MYY et al (2007) Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 207:324–339

    Article  Google Scholar 

  20. Panda SR, De S (2014) Effects of polymer molecular weight, concentration, and role of polyethylene glycol as additive on polyacrylonitrile homopolymer membranes. Polym Eng Sci 54:2375–2391

    Article  Google Scholar 

  21. Wongchitphimon S, Wang R, Jiraratananon R et al (2011) Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes. J Membr Sci 369:329–338

    Article  Google Scholar 

  22. Peng N, Widjojo N, Sukitpaneenit P et al (2012) Progress in polymer science evolution of polymeric hollow fibers as sustainable technologies: past, present, and future. Prog Polym Sci 37:1401–1424

    Article  Google Scholar 

  23. Van De Witte P, Van Den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117:1–31

    Article  Google Scholar 

  24. Liu H, Xiao C, Huang Q, Hu X (2013) Structure design and performance study on homogeneous-reinforced polyvinyl chloride hollow fiber membranes. Desalination 331:35–45

    Article  Google Scholar 

  25. Zhang X, Chen Y, Konsowa AHH et al (2009) Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment. Sep Purif Technol 70:71–78

    Article  Google Scholar 

  26. Yang C, Ming J, Wu C (2009) Poly (vinyl alcohol)/poly (vinyl chloride) composite polymer membranes for secondary zinc electrodes. J Power Sources 191:669–677

    Article  Google Scholar 

  27. Mei S, Xiao C, Hu X, Shu W (2011) Hydrolysis modification of PVC/PAN/SiO 2 composite hollow fi ber membrane. Desalination 280:378–383

    Article  Google Scholar 

  28. Zhao Y, Lu J, Liu X et al (2016) Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J Colloid Interface Sci 480:1–8

    Article  Google Scholar 

  29. Fan X, Su Y, Zhao X et al (2014) Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal. J Membr Sci 464:100–109

    Article  Google Scholar 

  30. Babu PR, Gaikar VG (1999) Preparation, structure, and transport properties of ultrafiltration membranes of poly (vinyl chloride) and poly (vinyl pyrrolidone) blends. J Appl Polym Sci 77:2606–2620

    Article  Google Scholar 

  31. Peng Y, Sui Y (2006) Compatibility research on PVC/PVB blended membranes. Desalination 196:13–21

    Article  Google Scholar 

  32. Zhang H, Hu X, Chen Y et al (2015) Dynamic rheological property and membrane formation of mechanochemically modified polyvinylchloride. J Mater Sci 50:4371–4378. doi:10.1007/s10853-015-8991-3

    Article  Google Scholar 

  33. Okuno H, Renzo K, Uragami T (1993) Influence of casting solution additive, degree of polymerization, and polymer concentration on poly(vinyl chloride) membrane properties and performance. J Membr Sci 83:199–209

    Article  Google Scholar 

  34. Rabiee H, Farahani MHDA, Vatanpour V (2014) Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J Membr Sci 472:185–193

    Article  Google Scholar 

  35. Hirose S, Shimizu A, Nose T (1979) Preparation and structures of the poly(vinyl chloride) porous membranes. J Appl Polym Sci 23:3193–3204

    Article  Google Scholar 

  36. Sadeghi M, Chenar MP, Rahimian M et al (2008) Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes. J Appl Polym Sci 110:1093–1098

    Article  Google Scholar 

  37. Roy KJ, Anjali TV, Sujith A (2016) Poly(vinyl chloride) asymmetric membrane modified with poly(ethylene glycol): effect of additive concentration on the morphology and performance. Polym Plast Technol Eng. doi:10.1080/03602559.2016.1253731

    Google Scholar 

  38. Mei Shuo, Changfa Xiao XH, Mei S, Xiao C, Hu X (2011) Preparation of porous PVC membrane via a phase inversion method from PVC/DMAc/Water/Additives. J Appl Polym Sci 120:557–562

    Article  Google Scholar 

  39. Davood Abadi Farahani MH, Rabiee H, Vatanpour V, Borghei SM (2016) Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: the effect of additive concentration and coagulation bath temperature. Desalin Water Treat 57:11931–11944

    Article  Google Scholar 

  40. Liu B, Chen C, Zhang W et al (2012) Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: effect of additives on properties and performance. Desalination 307:26–33

    Article  Google Scholar 

  41. Xu J, Xu Z-LL (2002) Poly (vinyl chloride)(PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent. J Membr Sci 208:203–212

    Article  Google Scholar 

  42. Machado PS, Habert A, Borges C (1999) Membrane formation mechanism based on precipitation kinetics and membrane morphology: flat and hollow fiber polysulfone membranes. J Membr Sci 155:171–183

    Article  Google Scholar 

  43. Li JF, Xu ZL, Yang H et al (2009) Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci 255:4725–4732

    Article  Google Scholar 

  44. Feng C, Wang R, Shi B et al (2006) Factors affecting pore structure and performance of poly (vinylidene fluoride-co-hexafluoro propylene) asymmetric porous membrane. J Membr Sci 277:55–64

    Article  Google Scholar 

  45. Zhang G, Lu S, Zhang L et al (2013) Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J Membr Sci 436:163–173

    Article  Google Scholar 

  46. Zhao X, Su Y, Li Y et al (2014) Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. J Membr Sci 450:111–123

    Article  Google Scholar 

  47. Lv C, Su Y, Wang Y et al (2007) Enhanced permeation performance of cellulose acetate ultrafiltration membrane by incorporation of Pluronic F127. J Membr Sci 294:68–74

    Article  Google Scholar 

  48. Hansen CM (2007) Hansen solubility parameters: a users hand book, 2nd edn. CRC Press, Taylor & Francis Group, Florida

    Book  Google Scholar 

  49. Guan R, Dai H, Li C et al (2006) Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J Membr Sci 277:148–156

    Article  Google Scholar 

  50. García-fernández L, García-payo MC, Khayet M (2014) Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fi ber membranes. J Membr Sci 468:324–338

    Article  Google Scholar 

  51. Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, New York

    Google Scholar 

  52. Zhao Yuanyuan, Jiaqi Lu, Liu Xuyang, Wang Yudan, Lin Jiuyang, Na Peng JL, Zhao F (2016) Performance enhancement of polyvinyl chloride ultrafiltration membrane modified with graphene oxide. J Colloid Interface Sci 480:1–8

    Article  Google Scholar 

  53. Lin J, Zhang R, Ye W et al (2013) Nano-WS2 embedded PES membrane with improved fouling and permselectivity. J Colloid Interface Sci 396:120–128

    Article  Google Scholar 

  54. Lin J, Ye W, Zhong K et al (2014) Enhancement of polyethersulfone (PES) membrane doped by monodisperse Stöber silica for water treatment. Chem Eng Process 107:194–205

    Article  Google Scholar 

  55. Yuan Z, Dan-li X (2008) Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination 223:438–447

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sujith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K.J., Anjali, T.V. & Sujith, A. Asymmetric membranes based on poly(vinyl chloride): effect of molecular weight of additive and solvent power on the morphology and performance. J Mater Sci 52, 5708–5725 (2017). https://doi.org/10.1007/s10853-017-0807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0807-1

Keywords

Navigation