Skip to main content

Advertisement

Log in

Pulsed laser-deposited composite carbon–glass–ceramic films with improved hardness

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A composite material obtained by mixing a glass–ceramic powder and C60 has been used to obtain thin films by nanosecond pulsed laser deposition technique, with the aim to improve the mechanical properties of the potentially bioactive coatings. Films have been deposited by using a Nd:YAG laser source (λ =  532, τ =  7 ns, 10 Hz) on titanium substrates heated at different temperatures. The deposited coatings present a sub-micron homogeneous texture completely covering the substrate with micrometric inclusions distributed on the whole surface, as observed by AFM and SEM. IR and XRD spectra of films are characteristic of amorphous calcium silicate materials, suggesting that the carbonaceous component inhibits the glass matrix crystallization, also at high deposition temperatures. Micro-Raman measurements evidence that fullerene transforms into amorphous carbon and reduced graphene oxide (RGO)-like domains in films deposited at room temperature and 500 °C, respectively. The presence of the RGO-like domains embedded in the amorphous glassy matrix has been related to the observed improved Vickers microhardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Baino F, Novajra G, Miguez-Pacheco V, Boccaccini AR, Vitale-Brovarone C (2016) Bioactive glasses: special applications outside the skeletal system. J Non Cryst Solids 432:15–30. doi:10.1016/j.jnoncrysol.2015.02.015

    Article  Google Scholar 

  2. Crovace MC, Souza MT, Chinaglia CR, Peitl O, Zanotto ED (2016) Biosilicate® A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J Non Cryst Solids 432:90–110. doi:10.1016/j.jnoncrysol.2015.03.022

    Article  Google Scholar 

  3. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res A 5(6):117–141

    Article  Google Scholar 

  4. Hench LL, Roki N, Fenn MB (2014) Bioactive glasses: importance of structure and properties in bone regeneration. J Mol Struct 1073(C):24–30. doi:10.1016/j.molstruc.2014.03.066

    Article  Google Scholar 

  5. Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass–ceramic scaffolds for bone tissue engineering. Mater (Basel) 3(7):3867–3910. doi:10.3390/ma3073867

    Article  Google Scholar 

  6. Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373. doi:10.1016/j.actbio.2011.03.016

    Article  Google Scholar 

  7. Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97A(4):514–535. doi:10.1002/jbm.a.33072

    Article  Google Scholar 

  8. Krajewski A, Malavolti R, Piancastelli A (1996) Albumin adhesion on some biological and non-biological glasses and connection with their Z-potentials. Biomaterials 17(1):53–60. doi:10.1016/0142-9612(96)80755-1

    Article  Google Scholar 

  9. Ledda M, De Bonis A, Bertani FR, Cacciotti I, Teghil R, Lolli MG, Ravaglioli A, Lisi Rau JV (2015) Interdisciplinary approach to cell-biomaterial interactions: biocompatibility and cell friendly characteristics of RKKP glass–ceramic coatings on titanium. Biomed Mater 10(3):035005. doi:10.1088/1748-6041/10/3/035005

    Article  Google Scholar 

  10. Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceram Int 36:1911–1916. doi:10.1016/j.ceramint.2010.03.017

    Article  Google Scholar 

  11. Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication, and apatite formation. J Biomed Mater Res A 102A(1):254–274. doi:10.1002/jbm.a.34690

    Article  Google Scholar 

  12. Grausova L, Vacik J, Vorlicek V, Svorcik V, Slepicka P, Bilkova P, Vandrovcova M, Lisa V, Babakova L (2009) Fullerene C60 films of continuous and micropatterned morphology as substrates for adhesion and growth of bone cells. Diam Relat Mater 18:578–586. doi:10.1016/j.diamond.2008.10.024

    Article  Google Scholar 

  13. Zhang B, Wang Y, Zhai G (2016) Biomedical applications of the graphene-based materials. Mater Sci Eng C 61:953–964. doi:10.1016/j.msec.2015.12.073

    Article  Google Scholar 

  14. Bacakova L, Kopova I, Stankova L, Liskova J, Vacik J, Laurentiev V, Kromka A, Potocky S, Stranska D (2014) Bone cells in cultures on nanocarbon based materials for potential bone tissue engineering: a review. Phys Status Solidi Appl Mater Sci 211(12):2688–2702. doi:10.1002/pssa.201431402

    Article  Google Scholar 

  15. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2018:804213. doi:10.1155/2015/804213

    Google Scholar 

  16. Xie Y, Li H, Ding C, Zheng X, Li K (2015) Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating. Int J Nanomedicine 10:3855–3863

    Article  Google Scholar 

  17. Deepachitra R, Nigam R, Purohit SD, Kumar BS, Hemalatha T, Sastry TP (2015) In vitro study of hydroxyapatite coatings on fibrin functionalized/pristine graphene oxide for bone grafting. Mater Manuf Process 30(6):804–811. doi:10.1080/10426914.2014.994758

    Article  Google Scholar 

  18. Ashok Raja C, Balakumar S, Durgalakshmi D, George RP, Anandkumar B, Mudali UK (2016) Reduced graphene oxide/nano-Bioglass composites: processing and super-anion oxide evaluation. RSC Adv 6(24):19657–19661. doi:10.1039/C5RA27160F

    Article  Google Scholar 

  19. Mehrali M, Akhiani AR, Talebian S, Meharali M, Latibari ST, Dolashahi-Pirouz A, Metselaar HSC (2016) Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate. J Eur Ceram Soc 36(2):319–332. doi:10.1016/j.jeurceramsoc.2015.08.025

    Article  Google Scholar 

  20. Liu J, Gao C, Feng P, Xiao T, Shuai C, Peng S (2015) A bioactive glass nanocomposite scaffold toughed by multi-wall carbon nanotubes for tissue engineering. J Ceram Soc Japan 123(6):485–491

    Article  Google Scholar 

  21. Porwal H, Grasso S, Reece MJ (2013) Review of graphene–ceramic matrix composites. Adv Appl Ceram 112(8):443–454. doi:10.1179/174367613X13764308970581

    Article  Google Scholar 

  22. Porwal H, Tatarko P, Grasso S, Hu C, Boccaccini AR, Dlouhy I, Reece MJ (2013) Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci Technol Adv Mater 14(5):055007. doi:10.1088/1468-6996/14/5/055007

    Article  Google Scholar 

  23. Montufar EB, Horynova M, Casas-Luna M, Diaz-De-La-Torre S, Celko L, Klakurkova L, Spotz Z, Dieguez-Trejo G, Fohlrova Z, Dvorak K, Zikmund T, Kaiser J (2016) Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate cermets for orthopaedic applications. JOM 68(4):1134–1142. doi:10.1007/s11837-015-1806-9

    Article  Google Scholar 

  24. Dorozhkin SV (2015) Calcium orthophosphate deposits: preparation, properties and biomedical applications. Mater Sci Eng C 55:272–326. doi:10.1016/j.msec.2015.05.033

    Article  Google Scholar 

  25. Cattini A, Bellucci D, Sola A, Pawłowski L, Cannillo V (2014) Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass. J Biomed Mater Res B Appl Biomater 102(3):551–560. doi:10.1002/jbm.b.33034

    Article  Google Scholar 

  26. Stan GE, Popescu AC, Mihailescu IN, Marcov DA, Mustata RC, Sima LE, Petrescu SM, Ianculescu A, Trusca R, Morosanu CO (2010) On the bioactivity of adherent bioglass thin films synthesized by magnetron sputtering techniques. Thin Solid Films 518(21):5955–5964. doi:10.1016/j.tsf.2010.05.104

    Article  Google Scholar 

  27. Clavijo S, Membrives F, Quiroga G, Boccaccini AR, Santillán MJ (2016) Electrophoretic deposition of Chitosan/Bioglass® and Chitosan/Bioglass®/TiO2 composite coatings for bioimplants. Ceram Int 42:14206–14213. doi:10.1016/j.ceramint.2016.05.178

    Article  Google Scholar 

  28. De Bonis A, Curcio M, Fosca M, Cacciotti I, Santagata A, Teghil R, Rau JV (2016) RBP1 bioactive glass-ceramic films obtained by pulsed laser deposition. Mater Lett 175:195–198. doi:10.1016/j.matlet.2016.04.044

    Article  Google Scholar 

  29. Floroian L, Florescu M, Sima F, Popescu-Pelin G, Ristoscu C, Mihailescu IN (2012) Synthesis of biomaterial thin films by pulsed laser technologies: electrochemical evaluation of bioactive glass-based nanocomposite coatings for biomedical applications. Mater Sci Eng C 32(5):1152–1157. doi:10.1016/j.msec.2012.03.001

    Article  Google Scholar 

  30. Krajewski A, Ravaglioli A, Tinti A, Taddei P, Mazzocchi M, Martinetti R, Fagnano C, Fini M (2005) Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses. J Mater Sci Mater Med 16(2):119–128. doi:10.1007/s10856-005-5913-y

    Article  Google Scholar 

  31. Rau JV, Teghil R, Fosca M, De Bonis A, Cacciotti I, Bianco A, Rossi Albertini V, Caminiti R, Ravaglioli A (2012) Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol–gel vs melt-processing route). Mater Res Bull 47(5):1130–1137. doi:10.1016/j.materresbull.2012.02.011

    Article  Google Scholar 

  32. Ferro D, Barinov SM, Rau JV, Latini A, Scandurra R, Brunetti B (2006) Vickers and Knoop hardness of electron beam deposited ZrC and HfC thin films on titanium. Surf Coat Technol 200:4701–4707. doi:10.1016/j.surfcoat.2005.02.150

    Article  Google Scholar 

  33. Cacciotti I, Lombardi M, Montanaro L (2012) Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour. J Mater Sci Mater Med 23:1849–1866. doi:10.1007/s10856-012-4667-6

    Article  Google Scholar 

  34. Lombardi M, Cacciotti I, Bianco A, Montanaro L (2015) RKKP bioactive glass–ceramic material through an aqueous sol–gel process. Ceram Int 41(3):3371–3380. doi:10.1016/j.ceramint.2014.10.064

    Article  Google Scholar 

  35. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous- colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–vis spectroscopy. Chem Phys Lett 364:8–17. doi:10.1016/S0009-2614(02)01305-2

    Article  Google Scholar 

  36. Singh RK, Narayan J (1990) Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys Rev B 41(13):8844–8859

    Google Scholar 

  37. Lumetti S, Manfredi E, Ferraris S, Spriano S, Passeri G, Ghiacci G, Macaluso G, Galli C (2016) The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces. J Mater Sci Mater Med 27(4):68. doi:10.1007/s10856-016-5678-5

    Article  Google Scholar 

  38. Ferraris S, Bobbio A, Miola M, Spriano S (2015) Micro- and nano-textured, hydrophilic and bioactive titanium dental implants. Surf Coat Technol 276:374–383. doi:10.1016/j.surfcoat.2015.06.042

    Article  Google Scholar 

  39. Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berners S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32(13):3395–3403. doi:10.1016/j.biomaterials.2011.01.029

    Article  Google Scholar 

  40. Im BJ, Lee SW, Oh N, Lee MH, Kang JH, Leesungboj R, Lee SC, Ahn SJ, Park JS (2011) Texture direction of combined microgrooves and submicroscale topographies of titanium substrata influence adhesion, proliferation, and differentiation in human primary cells. Arch Oral Biol 57(7):898–905. doi:10.1016/j.archoralbio.2011.11.013

    Article  Google Scholar 

  41. Porwal H, Grasso S, Cordero-Arias L, Li C, Boccaccini AR, Reece MJ (2014) Processing and bioactivity of 45S5 Bioglass-graphene nanoplatelets composites. J Mater Sci Mater Med 25(6):1403–1413. doi:10.1007/s10856-014-5172-x

    Article  Google Scholar 

  42. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401(1–4). doi:10.1103/PhysRevLett.97.187401

    Article  Google Scholar 

  43. Rau JV, Teghil R, De Bonis A, Generosi A, Paci B, Generosi R, Fosca M, Ferro D, Rossi Albertini V, Chilingarov NS (2010) Pulsed laser deposition of hard and superhard carbon thin films from C60 targets. Diam Relat Mater 19(1):7–14. doi:10.1016/j.diamond.2009.10.010

    Article  Google Scholar 

  44. Talyzin AV, Luzan SM, Anoshkin IV et al (2014) Hydrogen Driven cage unzipping of C60 into nano-graphenes. J Phys Chem C 118:6504–6513. doi:10.1021/jp500377s

    Article  Google Scholar 

  45. Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62(4):600–612. doi:10.1002/jbm.10280

    Article  Google Scholar 

  46. De Bonis A, Curcio M, Santagata A, Rau JV, Galasso A, Teghil R (2015) Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water. Appl Surf Sci 336:67–72. doi:10.1016/j.apsusc.2014.09.141

    Article  Google Scholar 

  47. Gan L (2015) Peroxide-mediated selective cleavage of [60]fullerene skeleton bonds: towards the synthesis of open-cage fulleroid C55O5. Chem Rec 15(1):189–198. doi:10.1002/tcr.201402057

    Article  Google Scholar 

  48. Brauer DS (2015) Bioactive glasses—structure and properties. Angew Chem Int Ed 54:4160–4181. doi:10.1002/anie.201405310

    Article  Google Scholar 

  49. Ben-nissan B, Choi AH, Bendavid A (2013) Mechanical properties of inorganic biomedical thin films and their corresponding testing methods. Surf Coat Technol 233:39–48. doi:10.1016/j.surfcoat.2012.11.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. De Bonis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curcio, M., De Bonis, A., Fosca, M. et al. Pulsed laser-deposited composite carbon–glass–ceramic films with improved hardness. J Mater Sci 52, 9140–9150 (2017). https://doi.org/10.1007/s10853-017-0771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0771-9

Keywords

Navigation