Skip to main content
Log in

Controlling the length of short electrospun polymer nanofibers via the addition of micro-spherical silica particles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Short electrospun nanofibers were fabricated by adding 1.2 µm micro-spherical silica particles with concentrations that varied from 0 to 10 wt% in a 13 wt% polymer solution. The addition of these silica particles resulted in four types of nanofibers: short, short-beaded, short aggregated-beaded, and continuous-beaded. The flow rate to fabricate short nanofibers was increased to 1 µL min−1 by the addition of 1–10 wt% silica particles, compared with the maximum flow rate of a plain polymer solution at 0.48 µL min−1. Short-beaded nanofibers were fabricated at 20 µL min−1 by the addition of 4 wt% silica particles not fabricated from the plain polymer solution. Nanofibers were cut at the edges of the micro silica particles, and the lengths were nearly in inverse proportion to the concentration of the silica particles. The lengths of the short nanofibers calculated by a cutting model, wherein the nanofibers were cut to match the portion of each micro silica particle, were consistent with the experimental results. This indicates that the lengths of short nanofibers can be simply controlled by the number of micro-spherical silica particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wagh A, Singh J, Qian S, Law B (2013) A short circulating peptide nanofiber as a carrier for tumoral delivery. Nanomedicine 9:449–457. doi:10.1016/j.nano.2012.10.009

    Google Scholar 

  2. Xu W, Feng Y, Ding Y et al (2015) Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity. Mater Lett 161:431–434. doi:10.1016/j.matlet.2015.09.014

    Article  Google Scholar 

  3. Fu L, Wu YN, Li F, Zhang B (2013) Synthesis of InNbO4 short nanofiber membrane as visible-light-driven photocatalyst. Mater Lett 109:225–228. doi:10.1016/j.matlet.2013.07.096

    Article  Google Scholar 

  4. Wang X, Liu H, Wang Z et al (2016) Effect of rare earth oxides on the properties of bio-soluble alkaline earth silicate fibers. J Rare Earths 34:203–207. doi:10.1016/S1002-0721(16)60015-7

    Article  Google Scholar 

  5. Zhang H, Chen JD, Guo H (2010) Electrospinning synthesis and luminescent properties of Lu2O3: Eu3+ nanofibers. J Rare Earths 28:232–235. doi:10.1016/S1002-0721(10)60331-6

    Article  Google Scholar 

  6. Zhang X, Shen Y, Xu B et al (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2061. doi:10.1002/adma.201503881

    Article  Google Scholar 

  7. Xu W, Ding Y, Jiang S et al (2014) Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur Polym J 59:129–135. doi:10.1016/j.eurpolymj.2014.07.028

    Article  Google Scholar 

  8. Jiang S, Duan G, Chen L et al (2015) Mechanical performance of aligned electrospun polyimide nanofiber belt at high temperature. Mater Lett 140:12–15. doi:10.1016/j.matlet.2014.11.003

    Article  Google Scholar 

  9. Park YS, Lee JW, Nam YS, Park WH (2015) Breathable properties of m-aramid nanofibrous membrane with high thermal resistance. J Appl Polym Sci 132:1–6. doi:10.1002/app.41515

    Article  Google Scholar 

  10. Raza MA, Westwood AVK, Stirling C, Ahmad R (2015) Effect of boron nitride addition on properties of vapour grown carbon nanofiber/rubbery epoxy composites for thermal interface applications. Compos Sci Technol 120:9–16. doi:10.1016/j.compscitech.2015.10.013

    Article  Google Scholar 

  11. Huang S, Zhao C, Pan W et al (2015) Direct writing of half-meter long CNT based fiber for flexible electronics. Nano Lett 15:1609–1614. doi:10.1021/nl504150a

    Article  Google Scholar 

  12. Barari B, Ellingham TK, Ghamhia II et al (2016) Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Compos Part B 84:277–284. doi:10.1016/j.compositesb.2015.08.040

    Article  Google Scholar 

  13. Zhang X, Jin G, Ma W et al (2015) Fabrication and properties of poly(L-lactide) nanofibers via blend sea-island melt spinning. J Appl Polym Sci. doi:10.1002/app.41228

    Google Scholar 

  14. Teo W-E, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12:13002. doi:10.1088/1468-6996/12/1/013002

    Article  Google Scholar 

  15. Fathona IW, Khairurrijal Yabuki A (2014) One-step fabrication of short nanofibers by electrospinning: effect of needle size on nanofiber length. Adv Mater Res 896:33–36. doi:10.4028/www.scientific.net/AMR.896.33

    Article  Google Scholar 

  16. Fathona IW, Yabuki A (2014) A simple one-step fabrication of short polymer nanofibers via electrospinning. J Mater Sci 49:3519–3528. doi:10.1007/s10853-014-8065-y

    Article  Google Scholar 

  17. Fathona IW, Yabuki A (2013) One-step fabrication of short electrospun fibers using an electric spark. J Mater Process Technol 213:1894–1899. doi:10.1016/j.jmatprotec.2013.05.013

    Article  Google Scholar 

  18. Fathona IW, Yabuki A (2014) Short electrospun composite nanofibers: effects of nanoparticle concentration and surface charge on fiber length. Curr Appl Phys 14:761–767. doi:10.1016/j.cap.2014.03.015

    Article  Google Scholar 

  19. Munir MM, Suryamas AB, Iskandar F, Okuyama K (2009) Scaling law on particle-to-fiber formation during electrospinning. Polymer 50:4935–4943. doi:10.1016/j.polymer.2009.08.011

    Article  Google Scholar 

  20. Park JH, Braun PV (2010) Coaxial electrospinning of self-healing coatings. Adv Mater 22:496–499. doi:10.1002/adma.200902465

    Article  Google Scholar 

  21. Vahedi V, Pasbakhsh P, Piao CS, Seng CE (2015) A facile method for preparation of self-healing epoxy composites: using electrospun nanofibers as microchannels. J Mater Chem A 3:16005–16012. doi:10.1039/C5TA02294K

    Article  Google Scholar 

  22. Jiang S, Duan G, Schöbel J et al (2013) Short electrospun polymeric nanofibers reinforced polyimide nanocomposites. Compos Sci Technol 88:57–61. doi:10.1016/j.compscitech.2013.08.031

    Article  Google Scholar 

  23. Liu J, Tang K, Song K et al (2014) Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6:5081–5086. doi:10.1039/c3nr05329f

    Article  Google Scholar 

  24. Langner M, Greiner A (2016) Wet-laid meets electrospinning: nonwovens for filtration applications from short electrospun polymer nanofiber dispersions. Macromol Rapid Commun 37:351–355. doi:10.1002/marc.201500514

    Article  Google Scholar 

  25. Mahalingam S, Edirisinghe M (2013) Forming of polymer nanofibers by a pressurised gyration process. Macromol Rapid Commun 34:1134–1139. doi:10.1002/marc.201300339

    Article  Google Scholar 

  26. Hong X, Edirisinghe M, Mahalingam S (2016) Beads, beaded-fibres and fibres: tailoring the morphology of poly(ε-caprolactone) using pressurised gyration. Mater Sci Eng 69:1373–1382. doi:10.1016/j.msec.2016.07.071

    Article  Google Scholar 

  27. Xu Z, Mahalingam S, Basnett P et al (2016) Making nonwoven fibrous poly(ε-caprolactone) constructs for antimicrobial and tissue engineering applications by pressurized melt gyration. Macromol Mater Eng 301:922–934. doi:10.1002/mame.201600116

    Article  Google Scholar 

  28. Luo CJ, Stoyanov SD, Stride E et al (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735. doi:10.1039/C2CS35083A

    Article  Google Scholar 

Download references

Funding

This research received no specific Grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Yabuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yabuki, A., Motonobu, E. & Fathona, I.W. Controlling the length of short electrospun polymer nanofibers via the addition of micro-spherical silica particles. J Mater Sci 52, 4016–4024 (2017). https://doi.org/10.1007/s10853-016-0663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0663-4

Keywords

Navigation