Skip to main content
Log in

On polystyrene–block polyisoprene–block polystyrene filled with carbon-coated Ni nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The manuscript focuses on the dispersion of magnetic nanoparticles within self-assembling block copolymers, on the preferential localization of nanoparticles and on the effect of their concentration on the magnetic properties of the nanocomposites and on the self-assembly features of the matrix. Carbon-coated nickel nanoparticles dispersed within polystyrene–block polyisoprene–block polystyrene have been investigated by Raman, X-ray, SQUID, differential scanning calorimetry, and electron microscopy. The effect of nanofiller on the self-assembly features of the block copolymer is reported. Preferential localization of nanofiller within the soft phase was noticed below 20 wt% nanofiller. Higher loadings with nanoparticles showed an uniform distribution of nanofiller within the block copolymer, consistent with the destruction of self-assembly. The effect of nanoparticles’ concentration on blocking temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pickering KL, Raa Khim SI, Ilanko S (2015) The effect of silane coupling agent on iron sand for use in magnetorheological elastomers. Part 1: Surface chemical modification and characterization. Composite Part A 68:377–386

    Article  Google Scholar 

  2. Sekitani T, Someya T (2010) Stretchable, large-area organic electronics. Adv Mater 22:2228–2246. doi:10.1002/adma.200904054

    Article  Google Scholar 

  3. Zhang S, Li Y, Peng L, Li Q, Chen S, Hou K (2013) Synthesis and characterization of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Composite Part A 66:94–101

    Article  Google Scholar 

  4. Xie K, Wei B (2014) Materials and structures for stretchable energy storage and conversion devices. Adv Mater 26:3592–3617. doi:10.1002/adma.201305919

    Article  Google Scholar 

  5. Sanvito S (2007) Organic electronics: spintronics goes plastic. Nat Mater 6:803–804

    Article  Google Scholar 

  6. Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743. doi:10.1016/j.addr.2012.10.008

    Article  Google Scholar 

  7. Chipara M, Skomski R, Ali N, Hui D, Sellmyer DJ (2009) Magnetic properties of barium ferrite dispersed within polystyrene–butadiene–styrene block copolymers. J Nanosci Nanotechnol 9:3678–3683

    Article  Google Scholar 

  8. Chipara M, Hui D, Sankar J, Leslie-Pelecky D, Bender A, Yue L et al (2004) On styrene–butadiene–styrene–barium ferrite nanocomposites. Composite Part B 35:235–243. doi:10.1016/S1359-8368(03)00054-4

    Article  Google Scholar 

  9. Galakhov VR, Buling A, Neumann M, Ovechkina NA, Shkvarin AS, Semenova AS et al (2011) Carbon states in carbon-encapsulated nickel nanoparticles studied by means of X-ray absorption, emission, and photoelectron spectroscopies. J Phys Chem C 115:24615–24620. doi:10.1021/jp2085846

    Article  Google Scholar 

  10. Cíntora-González O, Estournès C, Richard-Plouet M, Guille JL (2001) Nickel nano-particles in silica gel monoliths: control of the size and magnetic properties. Mater Sci Eng C 15:179–182. doi:10.1016/S0928-4931(01)00273-9

    Article  Google Scholar 

  11. Zhang P, Zuo F, Iii FKU, Khabari A, Griffiths P, Hosseini-Tehrani A (2001) Irreversible magnetization in nickel nanoparticles. J Magn Magn Mater 225:337–345

    Article  Google Scholar 

  12. Solzi M, Pernechele C, Calestani G, Villani M, Gaboardi M, Migliori A (2011) Non-interacting hard ferromagnetic L10 FePt nanoparticles embedded in a carbon matrix. J Mater Chem 21:18331. doi:10.1039/c1jm13469h

    Article  Google Scholar 

  13. Clem JR, Hao Z (1993) Theory for the hysteretic properties of the low-field dc magnetization in type-II superconductors. Phys Rev B 48:13774

    Article  Google Scholar 

  14. Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order–disorder transition temperature of polystyrene–block polyisoprene–block polystyrene copolymers. Macromolecules 23:561–570

    Article  Google Scholar 

  15. Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W et al (1995) Polyisoprene–polystyrene diblock copolymer phase diagram near the order–disorder transition. Macromolecules 28:8796–8806. doi:10.1021/ma00130a012

    Article  Google Scholar 

  16. Nayak B, Vitta S, Nigam A, Bahadur D (2006) Ni and Ni–nickel oxide nanoparticles with different shapes and a core–shell structure. Thin Solid Films 505(1):9–12

    Google Scholar 

  17. Gozzi D, Latini A, Capannelli G, Canepa F, Napoletano M, Cimberle MR et al (2006) Synthesis and magnetic characterization of Ni nanoparticles and Ni nanoparticles in multiwalled carbon nanotubes. J Alloys Compd 419:32–39. doi:10.1016/j.jallcom.2005.10.012

    Article  Google Scholar 

  18. Li W, Qiu T, Wang L, Ren S, Zhang J, He L et al (2013) Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres. ACS Appl Mater Interfaces 5:883–891. doi:10.1021/am302551d

    Article  Google Scholar 

  19. Granitzer P, Rumpf K, Venkatesan M, Roca AG, Cabrera L, Morales MP et al (2010) Magnetic study of Fe3O4 nanoparticles incorporated within mesoporous silicon. J Electrochem Soc 157:K145–K151. doi:10.1149/1.3425605

    Article  Google Scholar 

  20. Trohidou K, Vasilakaki M (2010) Magnetic behaviour of core/shell nanoparticle assemblies: interparticle interactions effects. Acta Phys Pol A 117:374–378

    Article  Google Scholar 

  21. Moreau LM, Ha D-H, Bealing CR, Zhang H, Hennig RG, Robinson RD (2012) Unintended phosphorus doping of nickel nanoparticles during synthesis with TOP: a discovery through structural analysis. Nano Lett 12:4530–4539. doi:10.1021/nl301642g

    Article  Google Scholar 

  22. Nallasamy P, Mohan S (2004) Vibrational spectra of cis-1, 4-polyisoprene. Arab J Sci Eng 29:17–26

    Google Scholar 

  23. Chipara M, Villarreal JR, Chipara MD, Lozano K, Chipara AC, Sellmyer DJ (2009) Spectroscopic investigations on polypropylene-carbon nanofiber composites. I. Raman and electron spin resonance spectroscopy. J Polym Sci Part B 47:1644–1652. doi:10.1002/polb.21766

    Article  Google Scholar 

  24. Bhowmik K, Mukherjee A, Mishra M, De G (2014) Stable Ni nanoparticle–reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature. Langmuir 30(11):3209–3216

    Article  Google Scholar 

  25. Chipara DM, Chipara AC, Chipara M (2011) Raman spectroscopy of carbonaceous materials: a concise review. Spectroscopy 26:2–7

    Google Scholar 

  26. Huang Y, Xu Z, Yang Y (2009) Preparation, characterization, and surface modification of carbon-encapsulated nickel nanoparticles. J Phys Chem C 113:6533–6538

    Article  Google Scholar 

  27. Gong J, Wang LL, Liu Y, Yang JH, Zong ZG (2008) Structural and magnetic properties of hcp and fcc Ni nanoparticles. J Alloys Compd 457:6–9. doi:10.1016/j.jallcom.2007.02.124

    Article  Google Scholar 

  28. Luo X, Chen Y, Yue G-H, Peng D-L, Luo X (2009) Preparation of hexagonal close-packed nickel nanoparticles via a thermal decomposition approach using nickel acetate tetrahydrate as a precursor. J Alloys Compd 476:864–868. doi:10.1016/j.jallcom.2008.09.117

    Article  Google Scholar 

  29. Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloys Compd 476:797–801. doi:10.1016/j.jallcom.2008.09.121

    Article  Google Scholar 

Download references

Acknowledgements

The research was performed in part in the Nebraska Nanoscale Facility: National Nanotechnology Coordinated Infrastructure and the Nebraska Center for Materials and Nanoscience, which are supported by the National Science Foundation under Award ECCS: 1542182, and the Nebraska Research Initiative. NSF DMR 1040419 MRI Grant “Acquisition of an Environmental Scanning Electron Microscope” is also acknowledged. UTRGV acknowledges the Department of Defense Grant “Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials,” W911NF-15-1-0063 and the NSF DMR-1523577: UTRGV-UMN Partnership for Fostering Innovation by Bridging Excellence in Research and Student Success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Chipara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Valloppilly, S., Chipara, D.M. et al. On polystyrene–block polyisoprene–block polystyrene filled with carbon-coated Ni nanoparticles. J Mater Sci 52, 2452–2459 (2017). https://doi.org/10.1007/s10853-016-0539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0539-7

Keywords

Navigation