Skip to main content
Log in

Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1,1-difluoroethane

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nano-Cr2O3 was prepared via solution combustion synthesis (SCS) with Cr(NO3)3·9H2O as the Cr precursor and glycine as the fuel. The effect of molar ratio of glycine to Cr in the feed during solution combustion was investigated. Cr2O3 samples were characterized by XRD, SEM, TEM, H2-TPR, and XPS. In addition, these catalysts were evaluated for the dehydrofluorination of 1,1-difluoroethane producing vinyl fluoride (VF, CH2=CHF). The results confirm that Cr2O3 is in relatively uniform flakes or flat particles via solution combustion synthesis with the particle size of 50–200 nm and composed by the aggregation of 58–77 nm nanoparticles. The specific surface area of higher than 30 m2 g−1 is achieved, which is comparable to the values obtained by solvothermal route. For the dehydrofluorination of 1,1-difluoroethane, high conversion levels (83 % for commercial catalyst and 93 % for SCS catalyst) are achieved at 350 °C, and the activity of SCS catalyst is at least 2× higher than that of commercial Cr2O3 at reaction temperatures below 300 °C. Compared with commercial Cr2O3, XPS, and H2-TPR reveal the higher CrO3 contents on the surface of Cr2O3 derived from SCS. It is suggested that CrO3 plays a major role in the catalytic performance as high-valent Cr species such as Cr(VI) are vital for the reaction because they could be transformed to the active species such as CrO x F y . In addition to the high activity, compared with commercial Cr2O3, SCS catalyst also show higher stability. Following the reaction of 120 h at 300 °C, no noticeable deactivation is observed while the activity of commercial Cr2O3 declines with TOS. High surface area and much smaller size of Cr2O3 crystalline favors the formation of CrO x F y during reaction over Cr2O3-3.33 catalyst probably contribute to the high activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Krishna Murthy J, Gross U, Rüdiger S, Ünveren E, Unger W, Kemnitz E (2005) Synthesis and characterization of chromium (III)-doped magnesium fluoride catalysts. Appl Catal A 282(1):85–91

    Article  Google Scholar 

  2. Bonniface D, Scott J, Watson M, Fryer J, Scott WS, Winfield J (1999) Halogen exchange reactions for CFC alternatives. The behaviour of fluorine-18 labelled hydrogen fluoride towards prefluorinated chromia containing nickel(II) or zinc(II). Green Chem 1(1):9–11

    Article  Google Scholar 

  3. Xie Z, Fan J, Cheng Y, Jin L, Hu G, Lu J, Luo M (2013) Cr2O3 catalysts for fluorination of 2-chloro-3,3,3-trifluoropropene to 2,3,3,3-tetrafluoropropene. Ind Eng Chem Res 52(9):3295–3299

    Article  Google Scholar 

  4. Wei M, Kou L, Bo W, Bai YB, Wei W, Jian L (2015) Catalytic gas-phase fluorination of 1,1,2,3-tetrachloropropene to 2-chloro-3,3,3-trifluoropropene over the fluorinated Cr2O3—based catalysts. Appl Catal A Gen 491:37–44

    Article  Google Scholar 

  5. Teinz K, Manuel SR, Bin Chen B, Pigamo A, Doucet N, Kemnitz E (2015) Catalytic formation of 2,3,3,3-tetrafluoropropene from 2-chloro-3,3,3-trifluoropropene at fluorinated chromia: a study of reaction pathways. Appl Catal B Environ 165:200–208. doi:10.1016/j.apcatb.2014.09.076

    Article  Google Scholar 

  6. Cao Z, Qin M, Jia B, Lin Z, Qi W, Wang M, Volinsky AA, Qu X (2014) Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries. Electrochim Acta 139(26):76–81

    Article  Google Scholar 

  7. Xu X, Wu J, Yang N, Na H, Li L, Gao J (2015) Cr2O3: a novel supercapacitor electrode material with high capacitive performance. Mater Lett 142:172–175

    Article  Google Scholar 

  8. Ma H, Xu Y, Rong Z, Cheng X, Gao S, Zhang X, Zhao H, Huo L (2012) Highly toluene sensing performance based on monodispersed Cr2O3 porous microspheres. Sens Actuators B Chem 174(11):325–331

    Article  Google Scholar 

  9. Sinha AK, Suzuki K (2004) Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angew Chem 44(2):271–273

    Article  Google Scholar 

  10. Bai G, Dai H, Liu Y, Ji K, Li X, Xie S (2013) Preparation and catalytic performance of cylinder- and cake-like Cr2O3 for toluene combustion. Catal Commun 36(36):43–47

    Article  Google Scholar 

  11. Bai YK, Zheng RT, Gu Q, Wang JJ, Wang BS, Cheng GA, Chen G (2014) One-step synthesis of hollow Cr(OH)3 micro/nano-hexagonal pellets and the catalytic properties of hollow Cr2O3 structures. J Mater Chem 2(32):12770–12775

    Article  Google Scholar 

  12. Brunet S, Boussand B, Rousset A, Andre D (1998) Influence of the morphology and of the composition of chromium oxides on their catalytic activity for the gas phase fluorination of 1, 1, 1-trifluoro-2-chloro-ethane. Preparation of hydrofluorocarbons. Appl Catal A 168(1):57–61

    Article  Google Scholar 

  13. Santulli AC, Feygenson M, Camino FE, Aronson MC, Wong SS (2011) Synthesis and characterization of one-dimensional Cr2O3 nanostructures. Chem Mater 23(4):1000–1008

    Article  Google Scholar 

  14. Jiao K, Zhang B, Yue B, Ren Y, Liu S, Yan S, Dickinson C, Zhou W, He H (2006) Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chem Commun (Cambridge, UK) 45(45):5618–5620

    Google Scholar 

  15. Kemnitz Erhard (2014) Nanoscale metal fluorides: a new class of heterogeneous catalysts. Catal Sci Technol 5(2):786–806

    Article  Google Scholar 

  16. Jia X (2012) Synthesis of microporous fluorinated chromia with a sharp pore distribution. RSC Adv 2(16):6695–6700

    Article  Google Scholar 

  17. Zhang W-X, Liang Y, Luo J-W, Jia A-P, Wang Y-J, Lu J-Q, Luo M-F (2016) Morphological effects of ordered Cr2O3 nanorods and Cr2O3 nanoparticles on fluorination of 2-chloro-1,1,1-trifluoroethane. J Mater Sci 51(13):1–9

    Article  Google Scholar 

  18. Gibot P, Schnell F, Spitzer D (2015) Ca3(PO4)2 biomaterial: a non toxic template to prepare highly porous Cr2O3. Mater Lett 161:172–174

    Article  Google Scholar 

  19. Sun H, Wang L, Chu D, Ma Z, Wang A (2015) Synthesis of porous Cr2O3 hollow microspheres via a facile template-free approach. Mater Lett 140:35–38

    Article  Google Scholar 

  20. Pei Z, Pei J, Chen H, Gao L, Zhou S (2015) Hydrothermal synthesis of large sized Cr2O3 polyhedrons under free surfactant. Mater Lett 159:357–361

    Article  Google Scholar 

  21. Roy M, Ghosh S, Naskar MK (2015) Solvothermal synthesis of Cr2O3 nanocubes via template-free route. Mater Chem Phys 159:101–106

    Article  Google Scholar 

  22. Mukasyan AS, Epstein P, Dinka P (2007) Solution combustion synthesis of nanomaterials. Proc Combust Inst 31(2):1789–1795

    Article  Google Scholar 

  23. Voskanyan AA (2015) Combustion synthesis of Cr2O3 octahedra with a chromium-containing metal–organic framework as a sacrificial template. CrystEngComm 17(13):2620–2623

    Article  Google Scholar 

  24. Lima MD, Bonadimann R, Andrade MJD, Toniolo JC, Bergmann CP (2006) Nanocrystalline Cr2O3 and amorphous CrO3 produced by solution combustion synthesis. J Eur Ceram Soc 26(7):1213–1220

    Article  Google Scholar 

  25. Jia W, Wu Q, Lang X, Hu C, Zhao G, Li J, Zhu Z (2015) Influence of lewis acidity on catalytic activity of the porous alumina for dehydrofluorination of 1,1,1,2-tetrafluoroethane to trifluoroethylene. Catal Lett 145(2):654–661

    Article  Google Scholar 

  26. Li GL, Nishiguchi H, Ishihara T, Moro-Oka Y, Takita Y (1998) Catalytic dehydrofluorination of CF3CH3 (HFC143a) into CF2CH2 (HFC1132a). Appl Catal B 16(16):309–317

    Article  Google Scholar 

  27. Teinz K, Wuttke S, Börno F, Eicher J, Kemnitz E (2011) Highly selective metal fluoride catalysts for the dehydrohalogenation of 3-chloro-1,1,1,3-tetrafluorobutane. J Catal 282(1):175–182

    Article  Google Scholar 

  28. Han W, Li X, Tang H, Wang Z, Xi M, Li Y, Liu H (2015) Preparation of fluorinated Cr2O3 hexagonal prism and catalytic performance for the dehydrofluorination of 1,1-difluoroethane to vinyl fluoride. J Nanopart Res 17(9):1–12

    Article  Google Scholar 

  29. Ebnesajjad S (2013) 3—preparation and properties of vinyl fluoride. In: Ebnesajjad S (ed) Polyvinyl fluoride. William Andrew Publishing, New York, pp 25–46

    Chapter  Google Scholar 

  30. Karamoddin M, Varaminian F (2013) Solubility of R22, R23, R32, R134a, R152a, R125 and R744 refrigerants in water by using equations of state. Int J Refrig 36(6):1681–1688

    Article  Google Scholar 

  31. Meenambika R, Ramalingom S, Thanu TC (2013) Effect of calcinations temperature on the structure of Cr2O3 nanoparticles prepared by novel solvent free synthesis. In: Proceedings of the international conference on advanced nanomaterials and emerging engineering technologies, ICANMEET 2013, pp 324–327

  32. González-Cortés SL, Imbert FE (2013) Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl Catal A 452:117–131

    Article  Google Scholar 

  33. Fumo DA, Morelli MR, Segadães AM (1996) Combustion synthesis of calcium aluminates. Mater Res Bull 31(10):1243–1255

    Article  Google Scholar 

  34. Moraes GG, Pozzobom IEF, Fernandes CP, De Oliveira APN (2015) MgAl2O4 foams obtained by combustion synthesis. Chem Eng Trans 43:1801–1806

  35. Bai J, Liu J, Li C, Li G, Du Q (2011) Mixture of fuels approach for solution combustion synthesis of nanoscale MgAl2O4 powders. Adv Powder Technol 22(1):72–76

    Article  Google Scholar 

  36. Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(11):603–619

    Google Scholar 

  37. Lin Y, Cai W, Tian X, Liu X, Wang G, Liang C (2011) Polyacrylonitrile/ferrous chloride composite porous nanofibers and their strong Cr-removal performance. J Mater Chem 21(4):991–997

    Article  Google Scholar 

  38. Liu B, Terano M (2001) Investigation of the physico-chemical state and aggregation mechanism of surface Cr species on a Phillips CrO x /SiO2 catalyst by XPS and EPMA. J Mol Catal A Chem 172(1–2):227–240

    Article  Google Scholar 

  39. Gao S, Dong C, Hong L, Xiao K, Pan X, Li X (2013) Scanning electrochemical microscopy study on the electrochemical behavior of CrN film formed on 304 stainless steel by magnetron sputtering. Electrochim Acta 114:233–241

    Article  Google Scholar 

  40. Fu XZ, Luo XX, Luo JL, Chuang KT, Sanger AR, Krzywicki A (2011) Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity. J Power Sour 196(3):1036–1041

    Article  Google Scholar 

  41. Cheng YX, Fan JL, Xie ZY, Lu JQ, Luo MF (2013) Effects of M-promoter (M = Y Co, La, Zn) on Cr2O3 catalysts for fluorination of perchloroethylene. J Fluor Chem 156(156):66–72

    Article  Google Scholar 

  42. Jiménez-López A, Rodríguez-Castellón E, Maireles-Torres P, Díaz L, Mérida-Robles J (2001) Chromium oxide supported on zirconium- and lanthanum-doped mesoporous silica for oxidative dehydrogenation of propane. Appl Catal A 218(1–2):295–306

    Article  Google Scholar 

  43. Simonova LG, Zirka AA, Reshetnikov SI, Larina TV, Litvak GS, Pinaeva LG, Isupova LA (2011) Influence of heat treatment conditions on the physicochemical and catalytic properties of a chromium-containing catalyst for tetrachloroethylene hydrofluorination to pentafluoroethane. Kinet Catal 52(3):418–426

    Article  Google Scholar 

  44. Albonetti S, Forni L, Cuzzato P, Alberani P, Zappoli S, Trifirò F (2007) Aging investigation on catalysts for hydrofluorocarbons synthesis. Appl Catal A 326(1):48–54

    Article  Google Scholar 

  45. Brunet S, Boussand B, Martin D (1997) Properties of chromium (III) oxides involved in the catalytic gas phase fluorination of CF3CH2Cl. J Catal 171(1):287–292

    Article  Google Scholar 

  46. Chung YS, Lee H, Jeong HD, Yu KK, Han GL, Kim HS, Kim S (1998) Enhanced catalytic activity of air-calcined fluorination catalyst. J Catal 175(2):220–225

    Article  Google Scholar 

  47. He J, Xie G-Q, Lu J-Q, Qian L, Zhang X-L, Fang P, Pu Z-Y, Luo M-F (2008) Effect of calcination temperature on CrO x –Y2O3 catalysts for fluorination of 2-chloro-1,1,1-trifluoroethane to 1,1,1,2-tetrafluoroethane. J Catal 253(1):1–10

    Article  Google Scholar 

  48. Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J, Xu R (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117(16):8214–8222

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY12B03007), the Qianjiang Talent Project B in Zhejiang Province (2013R10056), and Special Programs for Research Institutes in Zhejiang (2015F50031) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Wang, Z., Li, X. et al. Solution combustion synthesis of nano-chromia as catalyst for the dehydrofluorination of 1,1-difluoroethane. J Mater Sci 51, 11002–11013 (2016). https://doi.org/10.1007/s10853-016-0313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0313-x

Keywords

Navigation