Skip to main content

Advertisement

Log in

Possible new metastable Mo2Ga2C and its phase transition under pressure: a density functional prediction

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The newly synthesized novel double-Ga layer nanolaminated carbide Mo2Ga2C is stimulating tremendous research interests. In the present exploration of Mo2Ga2C structure, another plausible metastable structure with close-packed Ga layers is predicted from density functional calculations. This new structure (denoted as m-structure) is slightly less stable by only 52 meV/atom than the experimentally determined structure (e-structure) with on-top stacked Ga layers. Importantly, this m-structure is dynamically stable from the calculated phonon dispersion. Moreover, the stability behavior of this m-structure under compression shows that possible phase transition from e-phase to m-phase could occur under a pressure above 24.3 GPa, which requires further experimental confirmation. Phase transition model is proposed, and the energy barrier for phase transition is further derived. The electronic structures show that Mo–C bonds and Ga–Ga bonds are weaker in metastable m-phase than in e-phase. During compression, more strengthening of Ga–Ga and Mo–Ga bonds and less weakening of Mo–Mo bonds in m-phase explain the stabilization of m-phase under pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Radovic M, Barsoum MW (2013) MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull 92(3):20–27

    Google Scholar 

  2. Barsoum MW, Radovic M (2011) Elastic and mechanical properties of the MAX phases. Annu Rev Mater Sci 41(1):195–227

    Article  Google Scholar 

  3. Shein IR, Ivanovskii AL (2011) Elastic properties of superconducting MAX phases from first-principles calculations. Phys Status Solidi B Basic Solid State Phys 248(1):228–232

    Article  Google Scholar 

  4. Sun ZM (2011) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56(3):143–166

    Article  Google Scholar 

  5. Eklund P, Beckers M, Jansson U, Högberg H, Hultman L (2010) The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films 518(8):1851–1878

    Article  Google Scholar 

  6. Wang X, Zhou Y (2010) Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J Mater Sci Technol 26(5):385–416

    Article  Google Scholar 

  7. Wang J, Zhou Y (2009) Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu Rev Mater Sci 39:415–443

    Article  Google Scholar 

  8. Sun Z (2011) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56(3):143–166

    Article  Google Scholar 

  9. Bugnet M, Cabioc’h T, Mauchamp V, Guerin P, Marteau M, Jaouen M (2010) Stability of the nitrogen-deficient Ti2AlNx MAX phase in Ar2+-irradiated (Ti, Al)N/Ti2AlNx multilayers. J Mater Sci 45(20):5547–5552. doi:10.1007/s10853-010-4615-0

    Article  Google Scholar 

  10. Hu C, Lai C-C, Tao Q, Lu J, Halim J, Sun L, Zhang J, Yang J, Anasori B, Wang J, Sakka Y, Hultman L, Eklund P, Rosen J, Barsoum MW (2015) Mo2Ga2C: a new ternary nanolaminated carbide. Chem Commun 51(30):6560–6563

    Article  Google Scholar 

  11. Lai CC, Meshkian R, Dahlqvist M, Lu J, Näslund LÅ, Rivin O, Caspi EN, Ozeri O, Hultman L, Eklund P, Barsoum MW, Rosen J (2015) Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis. Acta Mater 99:157–164

    Article  Google Scholar 

  12. Horlait D, Grasso S, Chroneos A, Lee WE (2016) Attempts to synthesise quaternary MAX phases (Zr, M)2AlC and Zr2(Al, A)C as a way to approach Zr2AlC. Mater Res Lett. doi:10.1080/21663831.2016.1143053

  13. Lapauw T, Halim J, Lu J, Cabioc’h T, Hultman L, Barsoum M, Lambrinou K, Vleugels J (2016) Synthesis of the novel Zr3AlC2 MAX phase. J Eur Ceram Soc 36(3):943–947

    Article  Google Scholar 

  14. Cuskelly DT, Richards ER, Kisi EH, Keast VJ (2015) Ti3GaC2 and Ti3InC2: first bulk synthesis, DFT stability calculations and structural systematics. J Solid State Chem 230:418–425

    Article  Google Scholar 

  15. Petruhins A, Ingason AS, Lu J, Magnus F, Olafsson S, Rosen J (2015) Synthesis and characterization of magnetic (Cr0.5Mn0.5)2GaC thin films. J Mater Sci 50(13):4495–4502. doi:10.1007/s10853-015-8999-8

    Article  Google Scholar 

  16. Farber L, Levin I, Barsoum M, El-Raghy T, Tzenov T (1999) High-resolution transmission electron microscopy of some Tin+1AXn compounds (n = 1, 2; A = Al or Si; X = C or N). J Appl Phys 86:2540–2543

    Article  Google Scholar 

  17. Yu R, Zhan Q, He L, Zhou Y, Ye H (2002) Polymorphism of Ti3SiC2. J Mater Res 17(05):948–950

    Article  Google Scholar 

  18. Sun Z, Zhou J, Music D, Ahuja R, Schneider J (2006) Phase stability of Ti3SiC2 at elevated temperatures. Scr Mater 54(1):105–107

    Article  Google Scholar 

  19. Romero M, Escamilla R (2012) First-principles calculations of structural, elastic and electronic properties of Nb2SnC under pressure. Comput Mater Sci 55:142–146

    Article  Google Scholar 

  20. Manoun B, Saxena SK, El-Raghy T, Barsoum MW (2006) High-pressure X-ray diffraction study of Ta4AlC3. Appl Phys Lett 88(20):201902–201905

    Article  Google Scholar 

  21. Manoun B, Gulve RP, Saxena SK, Gupta S, Barsoum MW, Zha CS (2006) Compression behavior of M 2AlC (M = Ti, V, Cr, Nb, and Ta) phases to above 50 GPa. Phys Rev B 73(2):024110–024117

    Article  Google Scholar 

  22. Denis M, Jens E, Jochen MS (2007) Phase stability and elastic properties of Tan+1AlCn (n = 1–3) at high pressure and elevated temperature. J Phys Condens Matter 19(13):136207–136215

    Article  Google Scholar 

  23. Manoun B, Amini S, Gupta S, Saxena SK, Barsoum MW (2007) On the compression behavior of Cr2GeC and V2GeC up to quasi-hydrostatic pressures of 50 GPa. J Phys Condens Matter 19(45):456218–456225

    Article  Google Scholar 

  24. Kulkarni SR, Vennila RS, Phatak NA, Saxena S, Zha C, El-Raghy T, Barsoum M, Luo W, Ahuja R (2008) Study of Ti2SC under compression up to 47 GPa. J Alloys Compd 448(1):L1–L4

    Article  Google Scholar 

  25. Finkel P, Seaman B, Harrell K, Palma J, Hettinger JD, Lofland SE, Ganguly A, Barsoum MW, Sun Z, Li S, Ahuja R (2004) Electronic, thermal, and elastic properties of Ti3Si1−xGexC2 solid solutions. Phys Rev B 70(8):085104–085110

    Article  Google Scholar 

  26. Meshkian R, Ingason AS, Dahlqvist M, Petruhins A, Arnalds UB, Magnus F, Lu J, Rosen J (2015) Theoretical stability, thin film synthesis and transport properties of the Mon+1GaCn MAX phase. Phys Status Solidi Rapid Res Lett 9(3):197–201

    Article  Google Scholar 

  27. Yi J-X, Chen P, Li D-L, Xiao X-B, Zhang W-B, Tang B-Y (2010) Elastic and electronic properties of a new MAX compound from first-principles calculations. Solid State Commun 150(1–2):49–53

    Article  Google Scholar 

  28. Jiao Z, Ma S, Wang T (2015) High-pressure phase stability, mechanical properties and bonding characteristics of Ti4GeC3 compound. Solid State Sci 39:97–104

    Article  Google Scholar 

  29. Yang T, Wang C, Taylor CA, Huang X, Huang Q, Li F, Shen L, Zhou X, Xue J, Yan S (2014) The structural transitions of Ti3AlC2 induced by ion irradiation. Acta Mater 65:351–359

    Article  Google Scholar 

  30. Agne MT, Barsoum MW (2016) Enthalpy of formation and thermodynamic parameters of the MAX phase V2AlC. J Alloys Compd 665:218–224

    Article  Google Scholar 

  31. Shein IR, Ivanovskii AL (2010) Structural, elastic, electronic properties and fermi surface for superconducting Mo2GaC in comparison with V2GaC and Nb2GaC from first principles. Phys C 470(13–14):533–537

    Article  Google Scholar 

  32. Cover M, Warschkow O, Bilek M, McKenzie D (2009) A comprehensive survey of M2AX phase elastic properties. J Phys Condens Matter 21(30):305403–305411

    Article  Google Scholar 

  33. Sun W, Luo W, Ahuja R (2012) Role of correlation and relativistic effects in MAX phases. J Mater Sci 47(21):7615–7620. doi:10.1007/s10853-012-6609-6

    Article  Google Scholar 

  34. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  36. Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  Google Scholar 

  37. Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50

    Article  Google Scholar 

  38. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192

    Article  Google Scholar 

  39. Methfessel M, Paxton AT (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40(6):3616–3621

    Article  Google Scholar 

  40. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223–16232

    Article  Google Scholar 

  41. Bai Y, He X, Wang R (2015) Lattice dynamics of Al-containing MAX-phase carbides: a first-principle study. J Raman Spectrosc 46(9):784–794

    Article  Google Scholar 

  42. Dhakal C, Aryal S, Sakidja R, Ching W-Y (2015) Approximate lattice thermal conductivity of MAX phases at high temperature. J Eur Ceram Soc 35(12):3203–3212

    Article  Google Scholar 

  43. Spanier JE, Gupta S, Amer M, Barsoum MW (2005) Vibrational behavior of the Mn+1AXn phases from first-order raman scattering(M = Ti, V, Cr, a = Si, x = C, N). Phys Rev B 71(1):012103–012104

    Article  Google Scholar 

  44. Deringer VL, Tchougréeff AL, Dronskowski R (2011) Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A 115(21):5461–5466

    Article  Google Scholar 

  45. Dronskowski R, Bloechl PE (1993) Crystal orbital hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97(33):8617–8624

    Article  Google Scholar 

  46. Maintz S, Deringer VL, Tchougréeff AL, Dronskowski R (2013) Analytic projection from plane-wave and paw wavefunctions and application to chemical-bonding analysis in solids. J Comput Chem 34(29):2557–2567

    Article  Google Scholar 

  47. Emmerlich J, Music D, Houben A, Dronskowski R, Schneider JM (2007) Systematic study on the pressure dependence of M 2AlC phases (M = Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W). Phys Rev B 76(22):224111–224117

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the NSFC (51461002) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bi-Yu Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 528 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HC., Wang, JN., Shi, XF. et al. Possible new metastable Mo2Ga2C and its phase transition under pressure: a density functional prediction. J Mater Sci 51, 8452–8460 (2016). https://doi.org/10.1007/s10853-016-0105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0105-3

Keywords

Navigation