Skip to main content
Log in

Growth, structural, dielectric, ferroelectric, and mechanical properties of l-prolinium tartrate single crystal

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Organic ferroelectric l-prolinium tartrate (LPT) single crystals have been successfully grown by slow evaporation solution technique. The as-grown LPT crystal has been analyzed by CHN analysis to find the elemental compositions. Single-crystal XRD reveals the monoclinic lattice with non-centrosymmetric space group (P21) as well as cell parameters (a = 5.0071(3) Å, b = 17.7056(13) Å, c = 6.5371(4) Å, β = 100.525(6) °C, and V = 569.79(6) Å3). The Hirshfeld surface analysis was carried out to understand various intermolecular interactions in the grown crystal. From temperature-dependent dielectric measurement, a ferroelectric to paraelectric phase transition was observed at 45 °C and a very low (0.05) dielectric loss for higher frequencies (2 MHz) was observed. The FTIR spectroscopy has been carried out in order to identify the different functional groups present in the grown crystal. In ferroelectric studies, PE hysteresis loops were traced at different temperatures. A high value of piezoelectric charge coefficient (d 33 = 17 pC/N) was found. Vickers hardness test has been used to determine the mechanical strength of the grown crystals and the value of Meyer’s index was found to be n = 1.79 which suggested soft nature of crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Butler KT, Frost JM, Walsh A (2015) Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ Sci 8:838–848. doi:10.1039/C4EE03523B

    Article  Google Scholar 

  2. Suresh S, Ramanand A, Jayaraman D et al (2011) Synthesis, structural and dielectric properties of ferroelectric dichloridoglycine zinc dihydrate single crystals. J Miner Mater Charact Eng 10:339–349. doi:10.4236/jmmce.2011.104024

    Google Scholar 

  3. Lee K, Kolb B, Thonhauser T et al (2012) Structure and energetics of a ferroelectric organic crystal of phenazine and chloranilic acid. Phys Rev B 86:1–5. doi:10.1103/PhysRevB.86.104102

    Google Scholar 

  4. Horiuchi S, Tokura Y (2008) Organic ferroelectrics. Nat Mater 7:357–366. doi:10.1038/nmat2137

    Article  Google Scholar 

  5. Gon HB (1990) Ferroelectricity in calcium tartrate single crystals grown by gel technique. J Cryst Growth 102:501–504. doi:10.1016/0022-0248(90)90408-D

    Article  Google Scholar 

  6. Torres ME, López T, Peraza J et al (1998) Structural and dielectric characterization of cadmium tartrate. J Appl Phys 84:5729–5732. doi:10.1063/1.368863

    Article  Google Scholar 

  7. Torres ME, Yanes AC, Lopez T et al (1995) Characterization and thermal and electromagnetic behaviour of gadolinium-doped calcium tartrate crystals grown by the solution technique. J Cryst Growth 156:421–425. doi:10.1016/0022-0248(95)00236-7

    Article  Google Scholar 

  8. Arora S, Patel V, Chudasama B, Amin B (2005) Single crystal growth and characterization of strontium tartrate. J Cryst Growth 275:e657–e661. doi:10.1016/j.jcrysgro.2004.11.047

    Article  Google Scholar 

  9. Crasta V, Ravindrachary V, Bhajantri RF, Gonsalves R (2004) Growth and characterization of an organic NLO crystal: 1-(4-methylphenyl)-3-(4-methoxyphenyl)-2-propen-1-one. J Cryst Growth 267:129–133. doi:10.1016/j.jcrysgro.2004.03.037

    Article  Google Scholar 

  10. Myung S, Pink M, Baik M-H, Clemmer DE (2005) Dl-proline. Acta Crystallogr Sect C 61:o506–o508. doi:10.1107/S0108270105021001

    Article  Google Scholar 

  11. Devi TU, Lawrence N, Ramesh Babu R et al (2009) Synthesis, crystal growth and characterization of l-proline lithium chloride monohydrate: a new semiorganic nonlinear optical material. Cryst Growth Des 9:1370–1374. doi:10.1021/cg800589m

    Article  Google Scholar 

  12. Gupta MK, Sinha N, Kumar B (2011) Growth and characterization of new semi-organic l-proline strontium chloride monohydrate single crystals. Phys B Condens Matter 406:63–67. doi:10.1016/j.physb.2010.10.016

    Article  Google Scholar 

  13. Hasmuddin M, Singh P, Shkir M et al (2014) Structural, spectroscopic, optical, dielectric and mechanical study of pure and l-proline doped ammonium dihydrogen phosphate single crystals. Spectrochim Acta A 123:376–384. doi:10.1016/j.saa.2013.12.038

    Article  Google Scholar 

  14. Devi TU, Lawrence N, Babu RR, Ramamurthi K (2008) Growth and characterization of glycine picrate single crystal. Spectrochim Acta A 71:340–343. doi:10.1016/j.saa.2007.12.048

    Article  Google Scholar 

  15. Thukral K, Vijayan N, Singh B et al (2014) Growth, structural and mechanical analysis of a material for nonlinear optical applications. CrystEngComm 16:9245–9254. doi:10.1039/C4CE01232A

    Article  Google Scholar 

  16. Moovendaran K, Jayaramakrishnan V, Natarajan S (2014) Optical studies on l-tartaric acid and l-prolinium tartrate. Photonics Optoelectron 3:9. doi:10.14355/jpo.2014.0301.02

    Article  Google Scholar 

  17. Dhananjay Nagaraju J, Krupanidhi SB (2006) Effect of Li substitution on dielectric and ferroelectric properties of ZnO thin films grown by pulsed-laser ablation. J Appl Phys 99:034105. doi:10.1063/1.2169508

    Article  Google Scholar 

  18. Nandhini MS, Krishnakumar RV (2001) l-Prolinium tartrate. Acta Crystallogr Sect C. doi:10.1107/S0108270100020370

    Google Scholar 

  19. Martin SA, Dhas B, Natarajan S (2007) Growth and characterization of l-prolinium tartrate—a new organic NLO material. Cryst Res Technol 42:471–476. doi:10.1002/crat.200610850

    Article  Google Scholar 

  20. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. doi:10.1039/B818330A

    Article  Google Scholar 

  21. Dean PM, Pringle JM, Forsyth CM et al (2008) Interactions in bisamide ionic liquids—insights from a Hirshfeld surface analysis of their crystalline states. New J Chem 32:2121. doi:10.1039/b809606f

    Article  Google Scholar 

  22. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun. doi:10.1039/b704980c

    Google Scholar 

  23. Jayanalina T, Rajarajan G, Boopathi K, Sreevani K (2015) Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal: 2-amino 5-chloropyridinium-l-tartarate. J Cryst Growth 426:9–14. doi:10.1016/j.jcrysgro.2015.05.014

    Article  Google Scholar 

  24. Charoen-In U, Manyum P (2015) Growth of ferroelectric crystals: 4-aminopyridinium hydrogen maleate single crystals and their characterization. Ceram Int 41:S76–S80. doi:10.1016/j.ceramint.2015.03.203

    Article  Google Scholar 

  25. Arul H, Babu DR, Vizhi RE, Bhagavannarayana G (2015) Investigation on nucleation kinetics, structural and dielectric properties of an organic NLO single crystal—l-histidinium maleate (LHM). J Cryst Growth 423:22–27. doi:10.1016/j.jcrysgro.2015.04.021

    Article  Google Scholar 

  26. Yadav H, Sinha N, Kumar B (2014) Growth and characterization of piezoelectric benzil single crystals and its application in microstrip patch antenna. CrystEngComm 16:10700–10710. doi:10.1039/C4CE01846J

    Article  Google Scholar 

  27. Goldsmith GJ, White JG (1959) Ferroelectric behavior of thiourea. J Chem Phys 31:1175–1187. doi:10.1063/1.1730568

    Article  Google Scholar 

  28. Horiuchi S, Tokunaga Y, Giovannetti G et al (2010) Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463:789–792. doi:10.1038/nature09363

    Article  Google Scholar 

  29. Kroupa J, Vaněk P, Krupková R, Zikmund Z (1997) Dielectric and optical properties of weak ferroelectric cyclohexan-1, 1′-diacetic acid. Ferroelectrics 202:229–234. doi:10.1080/00150199708213480

    Article  Google Scholar 

  30. Subhashini V, Ponnusamy S, Muthamizhchelvan C (2010) Growth, optical, thermal, piezo and ferroelectric studies on ethylenediamine ditartrate dihydrate (EDADTDH) single crystals. J Cryst Growth 312:1040–1045. doi:10.1016/j.jcrysgro.2010.01.014

    Article  Google Scholar 

  31. Dalal J, Sinha N, Kumar B (2014) Structural, optical and dielectric studies of novel non-linear bisglycine lithium nitrate piezoelectric single crystal. Opt Mater (Amst) 37:457–463. doi:10.1016/j.optmat.2014.07.006

    Article  Google Scholar 

  32. Ray G, Sinha N, Bhandari S, Kumar B (2015) Achieving high piezoelectricity and fatigue free hysteresis in lead free relaxor ferroelectric ceramic 0.94[Na0.5K0.5NbO3]–0.06LiSbO3. Mater Chem Phys 159:107–113. doi:10.1016/j.matchemphys.2015.03.059

    Article  Google Scholar 

  33. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818. doi:10.1111/j.1151-2916.1999.tb01840.x

    Article  Google Scholar 

  34. Arlt G, Neumann H (1988) Internal bias in ferroelectric ceramics: origin and time dependence. Ferroelectrics 87:109–120. doi:10.1080/00150198808201374

    Article  Google Scholar 

  35. Kanagathara N, Marchewka MK, Gunasekaran S, Anbalagan G (2014) Kinetics and mechanical studies of melaminium bis(trichloroacetate) dihydrate. Acta Phys Pol, A 126:827–832. doi:10.12693/APhysPolA.126.827

    Article  Google Scholar 

  36. Sangwal K (2009) Review: indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids—some basic concepts and trends. Cryst Res Technol 44:1019–1037. doi:10.1002/crat.200900385

    Article  Google Scholar 

  37. Sahin O, Uzun O, Kolemen U, Ucar N (2007) Vickers microindentation hardness studies of β-Sn single crystals. Mater Charact 58:197–204. doi:10.1016/j.matchar.2006.04.023

    Article  Google Scholar 

  38. Shakir M, Ganesh V, Wahab MA et al (2010) Structural, optical and mechanical studies on pure and Mn2+ doped l-asparagine monohydrate single crystals. Mater Sci Eng B 172:9–14. doi:10.1016/j.mseb.2010.04.004

    Article  Google Scholar 

  39. Dalal J, Sinha N, Yadav H, Kumar B (2015) Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal. RSC Adv 5:57735–57748. doi:10.1039/C5RA10501C

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DST for the financial support received in DRDO project (Sanction No. ARMREB/MAA/2015/163) and DU R&D Grant (Sanction No. RC/2015/9677). Sonu Kumar is thankful to UGC for Junior Research Fellowship. Harsh Yadav is thankful to UGC for Meritorious Scholarship. Dr. Nidhi Sinha expresses her gratitude to the Principal, SGTB Khalsa College for encouragement and support for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sinha, N., Yadav, H. et al. Growth, structural, dielectric, ferroelectric, and mechanical properties of l-prolinium tartrate single crystal. J Mater Sci 51, 7614–7623 (2016). https://doi.org/10.1007/s10853-016-0040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0040-3

Keywords

Navigation