Skip to main content
Log in

In situ high-temperature powder diffraction studies of solid oxide electrolyte direct carbon fuel cell materials in the presence of brown coal

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Direct carbon fuel cells are an attractive alternative for conventional power generation; however, there is almost no information on the stability of conventional fuel cell materials in direct carbon fuel cell environments, in particular when exposed to realistic fuels and the contaminants contained within these fuels. Similarly, there is little information on the structure and phase assemblage of solid fuels exposed to typical environments found in direct carbon fuel cells. In this paper, we use in situ high-resolution synchrotron powder diffraction on conventional high-temperature fuel cell materials and untreated brown coal to assess the stability and reactivity of these materials at various temperatures up to 850 °C. Materials investigated include nickel metal (Ni), gadolinium-doped ceria (GDC) and yttria-stabilised zirconia (YSZ). The phase stability, crystallite size, lattice parameters and associated linear coefficient of thermal expansion were determined. The phase stability of all fuel cell materials was found to be good with no additional phase formation noted either during heating or after prolonged periods at temperature. An increase in the crystallite size was observed for both GDC and Ni. Non-linear thermal expansion observed in these materials was related to partial reduction of cerium ions (GDC) and due to a Curie point transition (Ni). A wide range of mineral phases were observed in the coal samples and these phases were found to change significantly with temperature. Mineral phases consistent with the ash composition and existing literature on Victorian brown coal were assigned to phases observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee C-G, Kim W-K (2015) Oxidation of ash-free coal in a direct carbon fuel cell. Int J Hydrog Energy 40:5475. doi:10.1016/j.ijhydene.2015.01.068

    Article  Google Scholar 

  2. Kaklidis N, Garagounis I, Kyriakou V et al (2015) Direct utilization of lignite coal in a Co–CeO2/YSZ/Ag solid oxide fuel cell. J. Hydrogen Energy, Int. doi:10.1016/j.ijhydene.2015.02.007

    Google Scholar 

  3. Xu K, Chen C, Liu H, Tian Y, Li X, Yao H (2014) Effect of coal based pyrolysis gases on the performance of solid oxide direct carbon fuel cells. Int J Hydrog Energy 39:17845. doi:10.1016/j.ijhydene.2014.08.133

    Article  Google Scholar 

  4. Jiao Y, Zhao J, An W et al (2015) Structurally modified coal char as a fuel for solid oxide-based carbon fuel cells with improved performance. J Power Sources 288:106. doi:10.1016/j.jpowsour.2015.04.121

    Article  Google Scholar 

  5. Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S, Ladewig BP (2014) Direct carbon fuel cell operation on brown coal. Appl Energy 120:56. doi:10.1016/j.apenergy.2014.01.046

    Article  Google Scholar 

  6. Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S (2015) Direct carbon fuel cell operation on brown coal with a Ni-GDC-YSZ anode. Electrochim Acta. doi:10.1016/j.electacta.2015.08.064

    Google Scholar 

  7. Dudek M (2015) On the utilization of coal samples in direct carbon solid oxide fuel cell technology. Solid State Ionics 271:121. doi:10.1016/j.ssi.2014.09.034

    Article  Google Scholar 

  8. Li X, Zhu Z, De Marco R, Bradley J, Dicks A (2010) Evaluation of raw coals as fuels for direct carbon fuel cells. J Power Sources 195:4051. doi:10.1016/j.jpowsour.2010.01.048

    Article  Google Scholar 

  9. Ahn SY, Eom SY, Rhie YH et al (2013) Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. Appl Energy 105:207. doi:10.1016/j.apenergy.2013.01.023

    Article  Google Scholar 

  10. Kacprzak A, Kobyłecki R, Włodarczyk R, Bis Z (2014) The effect of fuel type on the performance of a direct carbon fuel cell with molten alkaline electrolyte. J Power Sources 255:179. doi:10.1016/j.jpowsour.2014.01.012

    Article  Google Scholar 

  11. Munnings C, Kulkarni A, Giddey S, Badwal SPS (2014) Biomass to power conversion in a direct carbon fuel cell. Int J Hydrog Energy 39:12377. doi:10.1016/j.ijhydene.2014.03.255

    Article  Google Scholar 

  12. Yu J, Zhao Y, Li Y (2014) Utilization of corn cob biochar in a direct carbon fuel cell. J Power Sources 270:312. doi:10.1016/j.jpowsour.2014.07.125

    Article  Google Scholar 

  13. Elleuch A, Halouani K, Li Y (2015) Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel. J Power Sources 281:350. doi:10.1016/j.jpowsour.2015.01.171

    Article  Google Scholar 

  14. Hao W, He X, Mi Y (2014) Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source. Appl Energy 135:174. doi:10.1016/j.apenergy.2014.08.055

    Article  Google Scholar 

  15. Bonaccorso AD, Irvine JTS (2012) Development of tubular hybrid direct carbon fuel cell. Int J Hydrog Energy 37:19337. doi:10.1016/j.ijhydene.2012.02.104

    Article  Google Scholar 

  16. Badwal SPS, Fini D, Ciacchi FT, Munnings C, Kimpton JA, Drennan J (2013) Structural and microstructural stability of Ceria-Gadolinia electrolyte exposed to reducing environments of high temperature fuel cells. J Mater Chem A 1:10768. doi:10.1039/c3ta11752a

    Article  Google Scholar 

  17. Steele BCH (2000) Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ionics 129:95. doi:10.1016/S0167-2738(99)00319-7

    Article  Google Scholar 

  18. Kulkarni A, Giddey S, Badwal SPS (2015) Yttria-doped ceria anode for carbon-fueled solid oxide fuel cell. J Solid State Electrochem 19:325. doi:10.1007/s10008-014-2604-y

    Article  Google Scholar 

  19. Badwal SPS, Ciacchi FT (2000) Oxygen-ion conducting electrolyte materials for solid oxide fuel cells. Ionics 6:1. doi:10.1007/BF02375543

    Article  Google Scholar 

  20. Giddey S, Badwal SPS, Kulkarni A, Munnings C (2012) A comprehensive review of direct carbon fuel cell technology. Progr Energy Combust Sci 38:360. doi:10.1016/j.pecs.2012.01.003

    Article  Google Scholar 

  21. Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033. doi:10.1149/1.2408241

    Article  Google Scholar 

  22. Etsell TH, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev (Washington, DC, U. S.) 70:339. doi:10.1021/cr60265a003

  23. Cowin PI, Petit CTG, Lan R, Irvine JTS, Tao S (2011) Recent progress in the development of anode materials for solid oxide fuel cells. Adv Energy Mater 1:314. doi:10.1002/aenm.201100108

    Article  Google Scholar 

  24. Koide H, Someya Y, Yoshida T, Maruyama T (2000) Properties of Ni/YSZ cermet as anode for SOFC. Solid State Ionics 132:253. doi:10.1016/S0167-2738(00)00652-4

    Article  Google Scholar 

  25. Ju H, Eom J, Lee JK et al (2014) Durable power performance of a direct ash-free coal fuel cell. Electrochim Acta. doi:10.1016/j.electacta.2013.10.124

    Google Scholar 

  26. Xu X, Zhou W, Liang F, Zhu Z (2013) A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell. Appl Energy 108:402. doi:10.1016/j.apenergy.2013.03.053

    Article  Google Scholar 

  27. Gür TM (2013) Critical review of carbon conversion in “carbon fuel cells”. Chem Rev (Washington, DC, U. S.) 113:6179. doi:10.1021/cr400072b

  28. Hibino T, Hashimoto A, Yano M, Suzuki M, Sano M (2003) Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochim Acta 48:2531. doi:10.1016/S0013-4686(03)00296-2

    Article  Google Scholar 

  29. Xu S, Wang X (2005) Highly active and coking resistant Ni/CeO2–ZrO2 catalyst for partial oxidation of methane. Fuel 84:563. doi:10.1016/j.fuel.2004.10.008

    Article  Google Scholar 

  30. Rady AC, Giddey S, Kulkarni A, Badwal SPS, Bhattacharya S (2014) Degradation mechanism in a direct carbon fuel cell operated with demineralised brown coal. Electrochim Acta 143:278. doi:10.1016/j.electacta.2014.07.088

    Article  Google Scholar 

  31. Brockway DJ, Ottrey AL, Higgins RS (1991) The science of victorian brown coal. Butterworth-Heinemann, Oxford

    Google Scholar 

  32. Wallwork KS, Kennedy BJ, Wang D (2007) The high resolution powder diffraction beamline for the Australian synchrotron. AIP Conf Proc. doi:10.1063/1.2436201

    Google Scholar 

  33. Schmitt B, Brönnimann C, Eikenberry EF et al (2003) Mythen detector system. Nucl Instrum Methods Phys Res Sect A 501:267. doi:10.1016/S0168-9002(02)02045-4

    Article  Google Scholar 

  34. Yamamura H, Yagi Y, Kakinuma K (2008) Electrode effects for dielectric properties of 8 mol% Y2O3 stabilized ZrO2. Electrochemistry. http://doi.org/10.5796/electrochemistry.76.734

  35. Swanson HE, Tatge E, S United (1953) Standard X-ray diffraction powder patterns. Vol. I, data for 54 inorganic substances. National Bureanu of Standards, Washington

  36. Li M, Zeng F, Chang H, Xu B, Wang W (2013) Aggregate structure evolution of low-rank coals during pyrolysis by in situ X-ray diffraction. Int J Coal Geol 116–117:262. doi:10.1016/j.coal.2013.07.008

    Article  Google Scholar 

  37. Lu L, Sahajwalla V, Kong C, Harris D (2001) Quantitative X-ray diffraction analysis and its application to various coals. Carbon. doi:10.1016/S0008-6223(00)00318-3

    Google Scholar 

  38. Harold HS (1995) Coal science and technology. Elsevier, Amsterdam

    Google Scholar 

  39. Grim RE (1968) Clay mineralogy. McGraw-Hill, New York

    Google Scholar 

  40. Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem Concr Res 36:1134. doi:10.1016/j.cemconres.2006.03.022

    Article  Google Scholar 

  41. Balzar D, Audebrand N, Daymond MR et al (2004) Size–strain line-broadening analysis of the ceria round-robin sample. J Appl Crystallogr 37:911. doi:10.1107/S0021889804022551

    Article  Google Scholar 

  42. Sheldon BW, Mandowara S, Rankin J (2013) Grain boundary induced compositional stress in nanocrystalline ceria films. Solid State Ionics 233:38. doi:10.1016/j.ssi.2012.11.006

    Article  Google Scholar 

  43. Kossoy A, Feldman Y, Korobko R, Wachtel E, Lubomirsky I, Maier J (2009) Influence of point-defect reaction kinetics on the lattice parameter of Ce0.8Gd0.2O1.9. Adv Funct Mater 19:634. doi:10.1002/adfm.200801162

    Article  Google Scholar 

  44. Sheldon BW, Shenoy VB (2011) Space charge induced surface stresses: implications in ceria and other ionic solids. Phys Rev Lett 106:216104. doi:10.1103/PhysRevLett.106.216104

    Article  Google Scholar 

  45. Robinson I, Harder R (2009) Coherent X-ray diffraction imaging of strain at the nanoscale. Nat Mater 8:291. doi:10.1038/nmat2400

    Article  Google Scholar 

  46. Hayashi H, Kanoh M, Quan CJ et al (2000) Thermal expansion of Gd-doped ceria and reduced ceria. Solid State Ionics 132:227. doi:10.1016/S0167-2738(00)00646-9

    Article  Google Scholar 

  47. Kossoy A, Feldman Y, Wachtel E et al (2006) On the origin of the lattice constant anomaly in nanocrystalline ceria. Phys Chem Chem Phys 8:1111. doi:10.1039/B513764K

    Article  Google Scholar 

  48. Wu L, Wiesmann HJ, Moodenbaugh AR et al (2004) Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys Rev B. doi:10.1103/PhysRevB.69.125415

    Google Scholar 

  49. Sen R, Das S, Das K (2011) Microstructural characterization of nanosized ceria powders by X-ray diffraction analysis. Metall Mater Trans 42A:1409. doi:10.1007/s11661-010-0463-4

    Article  Google Scholar 

  50. Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129. doi:10.1007/BF02375916

    Article  Google Scholar 

  51. Biswas M, Kumbhar CS, Gowtam DS (2011) Characterization of nanocrystalline Yttria-stabilized zirconia: an in situ HTXRD study. ISRN Nanotechnol. doi:10.5402/2011/305687

    Google Scholar 

  52. Radovic M, Lara-Curzio E, Trejo RM, Wang H, Porter WD (2008) Thermophysical properties of YSZ and Ni-YSZ as a function of temperature and porosity. Advances in solid oxide fuel cells II: Ceramic engineering and science proceedings. Wiley

  53. Badwal SPS (1995) Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities. Solid State Ionics 76:67. doi:10.1016/0167-2738(94)00236-L

    Article  Google Scholar 

  54. Legendre B, Sghaier M (2011) Curie temperature of nickel. J Therm Anal Calorim 105:141. doi:10.1007/s10973-011-1448-2

    Article  Google Scholar 

  55. Kollie TG (1977) Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the Curie temperature. Phys Rev B 16:4872. doi:10.1103/PhysRevB.16.4872

    Article  Google Scholar 

  56. Major J, Mezei F, Nagy E, Sváb E, Tichy G (1971) Thermal expansion coefficient of nickel near the Curie point. Phys Lett A 35:377. doi:10.1016/0375-9601(71)90746-8

    Article  Google Scholar 

  57. Söffge F, Steichele E, Stierstadt K (1977) Thermal expansion anomaly of nickel near the Curie point. Phys Status Solidi (a). doi:10.1002/pssa.2210420226

  58. Hwang J-W (1972) Thermal expansion of nickel and iron, and the influence of nitrogen on the lattice parameter of iron at the curie temperature. Dissertation, University of Missouri-Rolla

  59. Natter H, Schmelzer M, Hempelmann R (1998) Nanocrystalline nickel and nickel-copper alloys: synthesis, characterization, and thermal stability. J Mater Res 13:1186. doi:10.1557/JMR.1998.0169

    Article  Google Scholar 

  60. Liu XD, Zhang HY, Lu K, Hu ZQ (1994) The lattice expansion in nanometre-sized Ni polycrystals. J Phys: Condens Matter 6:L497. doi:10.1088/0953-8984/6/34/001

    Google Scholar 

  61. Syukri T Ban, Ohya Y, Takahashi Y (2003) A simple synthesis of metallic Ni and Ni–Co alloy fine powders from a mixed-metal acetate precursor. Mater Chem Phys 78:645. doi:10.1016/S0254-0584(02)00185-2

    Article  Google Scholar 

  62. Hidnert P (1957) Thermal expansion of some nickel alloys. J Res Natl Bur Stand 58:89

    Article  Google Scholar 

  63. Jordan L, Swanger WH (1930) The properties of pure nickel. Bureau of standards. J Res. doi:10.6028/jres.005.075

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Australia Synchrotron for beamtime and Brown Coal Innovation Australia (BCIA) for partially funding this research. Special thanks are also given to Dr. Justin Kimpton of the Australian Synchrotron for his assistance with setting up batch processing of the refinements as well as with data collection. We would like to thank Aaron Seeber for reviewing this manuscript prior to submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Munnings.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rady, A.C., Munnings, C., Giddey, S. et al. In situ high-temperature powder diffraction studies of solid oxide electrolyte direct carbon fuel cell materials in the presence of brown coal. J Mater Sci 51, 3928–3940 (2016). https://doi.org/10.1007/s10853-015-9712-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9712-7

Keywords

Navigation