Skip to main content
Log in

Nanoindentation-based study of the micro-mechanical properties, structure, and hydration degree of slag-blended cementitious materials

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding the interplay between the micro-mechanical properties and the microstructure of cementitious materials can provide a basis for intelligently designing concrete with enhanced properties. In this study, the nanoindentation technique is used to measure the micro-mechanical properties of single phases through discrete nanoindentation and the properties over large areas of hardened pastes through grid nanoindentation. Comparisons are made between pastes with water-to-cementitious materials (w/cm) ratio by mass of 0.3, 0.4, and 0.5 and the slag content of 0, 50, and 70 % for w/cm = 0.3 paste, to illustrate their differences on the phase distribution and the micro-mechanical properties. Significant portion of composite phase is found in slag-blended paste. A three-phase model is used to determine the volume fraction of the unhydrated phase included in the composite. A nanoindentation-based methodology is proposed to calculate the degree of hydration of Portland cement and slag-blended cement pastes. The results are then compared with the degree of hydration quantified by using thermo-gravimetric analysis and the backscattered electron image analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Mater Res 7:1564–1582

    Article  Google Scholar 

  2. Trtik P, Munch B, Lura P (2009) A critical examination of statistical nanoindentation on model materials and hardened cement pastes based on virtual experiments. Cem Concr Compos 31(10):705–714

    Article  Google Scholar 

  3. Chen JJ, Sorelli L, Vandamme M, Ulm FJ, Chanvillard G (2010) A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)2 nanocomposites. J Am Ceram Soc 93(5):1484–1493

    Google Scholar 

  4. Zadeh VZ, Bobko CP (2013) Nanoscale mechanical properties of concrete containing blast furnace slag and fly ash before and after thermal damage. Cem Concr Compos 3:215–221

    Article  Google Scholar 

  5. DeJong MJ, Ulm FJ (2007) The nanogranular behavior of C-S-H at elevated temperatures. Cem Concr Res 37(1):1–12

    Article  Google Scholar 

  6. Venkovic K, Sorelli L, Martirena F (2014) Nanoindentation study of calcium silicate hydrates in concrete produced with effective microorganisms-based bioplasticizer. Cem Concr Compos 49:127–139

    Article  Google Scholar 

  7. Langan BW, Wang K, Ward MA (2012) Effects of silica fume and fly ash on heat of hydration of portland cement. Cem Concr Res 32(7):1045–1051

    Article  Google Scholar 

  8. Zhang Y, Sun W, Lin S (2002) Study of the heat of hydration of binder paste in high performance concrete. Cem Concr Res 32(9):1483–1488

    Article  Google Scholar 

  9. Lumley JS, Gollop RS, Moir GK (1996) Degrees of reaction of the slag in some blends with Portland cements. Cem Concr Res 26(1):139–151

    Article  Google Scholar 

  10. Feng X, Garboczia EJ, Bentza DP, Stutzmana PE, Mason TO (2004) Estimation of the degree of hydration of blended cement pastes by a scanning electron microscope point-counting procedure. Cem Concr Res 34(10):1787–1793

    Article  Google Scholar 

  11. Kjellsen KO, Detwiler RJ, Gjorv OE (1990) Backscattered electron imaging of cement pastes hydrated at different temperatures. Cem Concr Res 20(2):308–311

    Article  Google Scholar 

  12. Kocaba V, Gallucci E, Scrivener K (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42:511–525

    Article  Google Scholar 

  13. Hu C, Li Z, Gao Y, Han Y, Zhang Y (2013) Investigation on microstructures of cementitious composites incorporating slag. Adv Cem Res 26(4):222–232

    Article  Google Scholar 

  14. Miller M, Bobko C, Vandamme M, Ulm FJ (2008) Surface roughness criteria for cement paste nanoindentation. Cem Concr Res 38:467–476

    Article  Google Scholar 

  15. Constantinides G, Ulm FJ (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem Concr Res 34(1):67–80

    Article  Google Scholar 

  16. Constantinides G, Ulm FJ, Van Vliet K (2003) On the use of nanoindentation for cementitious materials. Mater Struct 36:191–196

    Article  Google Scholar 

  17. Melo Neto AA, Cincotto MA, Repette W (2008) Drying and autogenous shrinkage of pastes and mortars with activated slag cement. Cem Concr Res 38:565–574

    Article  Google Scholar 

  18. Hughes JJ, Trtik P (2004) Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: a preliminary correlation of physical properties with phase type. Mater Charact 53:223–231

    Article  Google Scholar 

  19. Scrivener K (2006) Backscattered Electron Imaging of cementitious microstructures: understanding and quantification. Cem Concr Compos 26:935–945

    Article  Google Scholar 

  20. Jennings HM (2008) Refinements to colloid model of C-S-H in cement: CM-II. Cem Concr Res 38:275–289

    Article  Google Scholar 

  21. Harrisson AM, Winter NB, Taylor H (1986) Microstructure and microchemistry of slag cement pastes. Mater Res Soc Proc 86:213–222

    Article  Google Scholar 

  22. Taylor H (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  23. Richardson IG (2004) Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, Portland cement, and blends of Portland cement with blast-fumace slag, metakaolin, or silica fume. Cem Concr Res 34(9):1733–1777

    Article  Google Scholar 

  24. Mondal P, Shah SP, Marks L (2007) A reliable technique to determine the local mechanical properties the nanoscale for cementitious materials. Cem Concr Res 37:1440–1444

    Article  Google Scholar 

  25. Davydov D, Jirásek M, Kopecký L (2011) Critical aspect of nano-indentation technique in application to hardened cement paste. Cem Concr Res 41:20–29

    Article  Google Scholar 

  26. Constantimides G, Ulm FJ (2007) The nanogranular nature of C-S-H. J Mech Phys Solids 55:64–90

    Article  Google Scholar 

  27. Duan HL, Jiao Y, Yi X, Huang ZP, Wang J (2006) Solutions of inhomogeneity problems with Graded shells and application to core–shell nanoparticles and composites. J Mech Phys Solids 54:1401–1425

    Article  Google Scholar 

  28. Velez K, Maximilien S, Damidot D (2001) Determination of nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker. Cem Concr Res 31:555–561

    Article  Google Scholar 

  29. Manzano H, Dolado JS, Ayuela A (2009) Elastic properties of the main species present in Portland cement paste. Acta Mater 57:1666–1674

    Article  Google Scholar 

  30. Haha MB, Weerdt KD, Lothenbach B (2010) Quantification of the degree of reaction of fly ash. Cem Concr Res 40:1620–1629

    Article  Google Scholar 

  31. Hansen PF, Pedersen EJ (1977) Maleinstrument til kontrol of betons haerdning. Nordisk Betong 1:21–29

    Google Scholar 

  32. Pane I, Hansen W (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res 35(6):1155–1164

    Article  Google Scholar 

  33. Taylor R, Richardson IG, Brydson R (2010) Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blendes containing 0 to 100 % slag. Cem Concr Res 40:971–983

    Article  Google Scholar 

  34. Yio M, Phelan J, Wong H, Buenfeld N (2014) Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes. Cem Concr Res 56:171–181

    Article  Google Scholar 

  35. Darquennes A, Espion B, Staquet S (2013) How to assess the hydration of slag cement concretes. Constr Build Mater 40:1012–1020

    Article  Google Scholar 

Download references

Acknowledgement

This study was funded by National Science Foundation of China (grant number 51578316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wei.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Gao, X. & Liang, S. Nanoindentation-based study of the micro-mechanical properties, structure, and hydration degree of slag-blended cementitious materials. J Mater Sci 51, 3349–3361 (2016). https://doi.org/10.1007/s10853-015-9650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9650-4

Keywords

Navigation