Skip to main content
Log in

The effect of elevated temperature and high moisture content on the fracture behaviour of thermally modified spruce

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the effect of moisture content and temperature on the fracture behaviour of thermally modified Norway spruce (Picea abies [L.] Karst.) in the transverse plane. Spruce was thermally modified at two heat treatment temperatures, 190 and 210 °C. Mode I fracture tests were carried out at temperatures of 22 and 50 °C on air-dried and fully water-saturated (>fibre saturation point) material. Small CT specimens were used, and load–CMOD curves were recorded. Characteristic fracture parameters were calculated. The fracture surfaces were subsequently examined using optical microscopy. Thermal modification altered all the calculated fracture parameter values and the changes increased as the severity of heat treatment increased. The parameters were altered more in the radial-tangential (RT) than in tangential-radial (TR) orientation. The failure mode changed due to heat treatment in the TR orientation but in the RT orientation the failure mode of unmodified and heat treated material differs only at high moisture content and elevated temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioResources 4:370–404

    Google Scholar 

  2. Borrega M (2011) Mechanisms affecting the structure and properties of heat-treated and high-temperature dried Norway spruce (Picea abies) wood, PhD dissertation. University of Eastern Finland

  3. Hughes M, Hill C, Pfriem A (2015) The toughness of hygrothermally modified wood—a review. COST action FP0904 2010-2014: thermo-hydro-mechanical wood behavior and processing. Holzforschung. doi:10.1515/hf-2014-0184

  4. Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155

    Article  Google Scholar 

  5. Zaman A, Alén R, Kotilainen R (2000) Thermal behavior of scots pine (Pinus Sylvestris) and silver birch (Betula Pendula) at 200–230°C. Wood Fiber Sci 32:138–143

    Google Scholar 

  6. Burmester A (1975) Zur Dimensionsstabilisierung von Holz. Holz als Roh-und Werkstoff 33:333–335

    Article  Google Scholar 

  7. Borrega M, Kärenlampi PP (2010) Three mechanisms affecting the mechanical properties of spruce wood dried at high temperatures. J Wood Sci 56:87–94

    Article  Google Scholar 

  8. Bergander A, Salmén L (2002) Cell wall properties and their effects on the mechanical properties of fibers. J Mater Sci 37:151–156. doi:10.1023/A:1013115925679

    Article  Google Scholar 

  9. Reiterer A, Sinn G (2002) Fracture behaviour of modified spruce wood: a study using linear and non linear fracture mechanics. Holzforschung 56:191–198

    Article  Google Scholar 

  10. Murata K, Watanabe Y, Nakano T (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197

    Article  Google Scholar 

  11. Majano-Majano A, Hughes M, Fernandez-Cabo JL (2012) The fracture toughness and properties of thermally modified beech and ash at different moisture contents. Wood Sci Technol 46:5–21

    Article  Google Scholar 

  12. Pleschberger H, Teischinger A, Müller U, Hansmann C (2014) Change in fracturing and colouring of solid spruce and ash wood after thermal modification. Wood Mater Sci Eng 9:92–101

    Article  Google Scholar 

  13. Tukiainen P, Hughes M (2015) The effect of temperature and moisture content on fracture behaviour of spruce and birch. Holzforschung. doi:10.1515/hf-2015-0017

    Google Scholar 

  14. Schachner H, Reiterer A, Stanzl-Tschegg S (2000) Orthotropic fracture toughness of wood. J Mater Sci Lett 19:1783–1785. doi:10.1023/A:1006703718032

    Article  Google Scholar 

  15. Borrega M, Kärenlampi PP (2008) Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci 54:323–328

    Article  Google Scholar 

  16. Esteves B, Domingos I, Pereira H (2008) Pine wood modification by heat treatment in air. BioResources 3:142–154

    Google Scholar 

  17. Keunecke D, Stanzl-Tschegg S, Niemz P (2007) Fracture characterisation of yew (Taxus baccata L.) and spruce (Picea abies [L.] Karst.) in the radial-tangential and tangential-radial crack propagation system by a micro wedge splitting test. Holzforschung 61:582–588

    Article  Google Scholar 

  18. Thuvander F, Berglund L (2000) In situ observations of fracture mechanisms for radial cracks in wood. J Mater Sci 35:6277–6283. doi:10.1023/A:1026778622156

    Article  Google Scholar 

  19. Vasic S, Stanzl-Tschegg S (2007) Experimental and numerical investigation of wood fracture mechanisms at different humidity levels. Holzforschung 61:367–374

    Article  Google Scholar 

  20. Thuvander F, Jernkvist L, Gunnars J (2000) Influence of repetitive stiffness variation on crack growth behaviour in wood. J Mater Sci 35:6259–6266. doi:10.1023/A:1026766203501

    Article  Google Scholar 

  21. Borrega M, Kärenlampi PP (2011) Radial mechanical properties of high-temperature dried Norway spruce (Picea abies) wood. Wood Mater Sci Eng 6:147–154

    Article  Google Scholar 

  22. Ashby M, Easterling K, Harrysson R, Maiti S (1985) The fracture and toughness of woods. Proc R Soc Lond A 398:261–280

    Article  Google Scholar 

  23. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  24. Perilä O (1961) The chemical composition of carbohydrates of wood cells. J Polym Sci 51:19–26

    Article  Google Scholar 

Download references

Acknowledgements

This work formed part of “E-Wood”, a project supported by the Multidisciplinary Institute of Digitalisation and Energy (MIDE, http://www.mide.aalto.fi). The authors would like to thank Raute Oyj for providing fresh spruce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Tukiainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukiainen, P., Hughes, M. The effect of elevated temperature and high moisture content on the fracture behaviour of thermally modified spruce. J Mater Sci 51, 1437–1444 (2016). https://doi.org/10.1007/s10853-015-9463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9463-5

Keywords

Navigation