Skip to main content
Log in

Novel multiwalled carbon nanotube grafted with polyethylene glycol-block-polystyrene nanohybrids: ATRP synthesis and detection of benzene vapor

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel multiwalled carbon nanotube graft polyethylene glycol-block-polystyrene copolymer nanohybrids (MWCNTs-g-PEG-b-PS) were prepared via atom transfer radical polymerization using carboxylated MWCNTs (MWCNTs–COOH) as a conductive carrier. The chemical structure and the compositions of graft copolymer nanohybrids were characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetry, and gas chromatography, and the morphologies and dispersion behavior were observed by ultraviolet visible spectrophotometer, scanning electron microscope, and transmission electron microscope etc. The MWCNTs-g-PEG-b-PS-grafted copolymer nanohybrids were fabricated into conductive composite thin film sensors to investigate their responsiveness to benzene vapor. The influence of the molecular weights or compositional ratios of PEG and PS blocks on the conductivity of the conducting polymer nanohybrids and responsibility towards benzene vapor was investigated. The conducting polymer nanohybrid film sensors were demonstrated to possess the characteristics of quick response and good restorability, repeatability, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pang H, Xu L, Yan DX, Li ZM (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39:1908–1933

    Article  Google Scholar 

  2. Ma LF, Bao RY, Huang SL, Liu ZY, Yang W, Xie BH, Yang MB (2013) Electrical properties and morphology of carbon black filled PP/EPDM blends: effect of selective distribution of fillers induced by dynamic vulcanization. J Mater Sci 48:4942–4951. doi:10.1007/s10853-013-7275-z

    Article  Google Scholar 

  3. Deng H, Lin L, Ji MZ, Zhang SM, Yang MB, Fu Q (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655

    Article  Google Scholar 

  4. Zribi K, Feller JF, Elleuch K, Bourmaud A, Elleuch B (2006) Conductive polymer composites obtained from recycled poly(carbonate) and rubber blends for heating and sensing applications. Polym Adv Technol 17:727–731

    Article  Google Scholar 

  5. Kumar B, Castro M, Fell JF (2012) Tailoring the chemo-resistive response of self-assembled polysaccharide-CNT sensors by chain conformation at tunnel junctions. Carbon 50:3627–3634

    Article  Google Scholar 

  6. Villmow T, Pegel S, John A, Rentenberger R, Pötschke P (2011) Liquid sensing: smart polymer/CNT composites. Mater Today 14:340–345

    Article  Google Scholar 

  7. Tang CY, Long GC, Hu X, Wong KW, Lau WM, Fan MK, Mei J, Xu T, Wang B, Hui D (2015) Conductive polymer nanocomposites with hierarchical multi-scale-structure via self-assembling carbon-nanotubes on grapheme on polymer-microspheres. Nanoscale 6:7877–7888. doi:10.1039/C3NR06056J

    Article  Google Scholar 

  8. Tiusanen J, Vlasveld D, Vuorinen J (2012) Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts. Compos Sci Technol 72:1741–1752

    Article  Google Scholar 

  9. Mechrez G, Suckeveriene RY, Zelikman E, Rosen J, Ariel-Sternberg N, Cohen R, Narkis M, Segal E (2012) Highly-tunable polymer/carbon nanotubes systems: preserving dispersion architecture in solid composites via rapid microfiltration. ACS Macro Lett 1:848–852

    Article  Google Scholar 

  10. Zhang MQ, Rong MZ, Chen SG (2007) Conductive polymer composites serving as gas sensors. Key Eng Mater 334–335:561–564

    Article  Google Scholar 

  11. Sartore L, Sassi A, Barbaglio M (2011) Properties of multifunctional polymers-carbon black composite vapor detectors. Chem Chem Technol 5:67–74

    Google Scholar 

  12. Mangu R, Rajaputra S, Singh VP (2011) MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors. Nanotechnology 22:215502–215508

    Article  Google Scholar 

  13. Smith Martyn T (2010) Advances in understanding benzene health effects and susceptibility. Ann Rev Public Health 31:133–148

    Article  Google Scholar 

  14. Huff J (2007) Benzene-induced cancers: abridged history and occupational health impact. Int J Occup Environ Health 13:213–221

    Article  Google Scholar 

  15. Rana SV, Verma Y (2005) Biochemical toxicity of benzene. J Environ Biol 26:157–168

    Google Scholar 

  16. Villmow T, Kretzschmar B, Potschke P (2010) Influence of screw configuration, residence time, and specific mechanical energy in twin-screw extrusion of polycaprolactone/multi-walled carbon nanotube composites. Compos Sci Technol 70:2045–2055

    Article  Google Scholar 

  17. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  18. Wang HC, Li Y, Yang MJ (2007) Sensors for organic vapor detection based on composites of carbon nanotubes functionalized with polymers. Sens Actuators B 124:360–367

    Article  Google Scholar 

  19. Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4:2911–2934

    Article  Google Scholar 

  20. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146

    Article  Google Scholar 

  21. Shen J, Champagne MF, Gendron R, Guo S (2012) The development of conductive carbon nanotube networks in polypropylene-based composites during simultaneous biaxial stretching. Eur Polym J 48:930–939

    Article  Google Scholar 

  22. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  Google Scholar 

  23. Shrivastava NK, Khatua BB (2011) Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites. Carbon 49:4571–4579

    Article  Google Scholar 

  24. Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P (2008) Multi-walled carbon nanotube filled polypropylene nanocomposites based on masterbatch route: improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym Lett 2:735–745

    Article  Google Scholar 

  25. Pötschke P, Krause B, Buschhorn ST, Köpke U, Müller MT, Villmow T, Schulte K (2013) Improvement of carbon nanotube dispersion in thermoplastic composites using a three roll mill at elevated temperatures. Compos Sci Technol 74:78–84

    Article  Google Scholar 

  26. Majeed S, Filiz V, Shishatskiy S, Wind J, Abetz C, Abetz V (2012) Pyrene-POSS nanohybrid as a dispersant for carbon nanotubes in solvents of various polarities: its synthesis and application in the preparation of a composite membrane. Nanoscale Res Lett 7:296–306

    Article  Google Scholar 

  27. Crescenzo AD, Ettorre V, Fontana A (2014) Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol 5:1675–1690

    Article  Google Scholar 

  28. Li JR, Xu JR, Zhang MQ, Rong MZ (2003) Electrical response to organic vapor of conductive composites from amorphous polymer/carbon black prepared by polymerization filling. Macromol Mater Eng 288:103–107

    Article  Google Scholar 

  29. Lala NL, Thavasi V, Ramakrishna S (2009) Preparation of surface adsorbed and impregnated multiwalled carbon nanotube/nylon-6 nanofiber composites and investigation of their gas sensing ability. Sensors 9:86–101

    Article  Google Scholar 

  30. Luo YL, Wang SH, Li ZQ (2008) Characterization, microstructure, and gas sensitive response behavior of PEG/lithium salt polymer electrolyte films. J Mater Sci 43:174–184. doi:10.1007/s10853-007-2125-5

    Article  Google Scholar 

  31. Xu JW, Xu F, Luo YL (2015) Core cross-linked H-type poly(methacrylic acid)-block-hydroxyl terminated polybutadiene-block-poly(methacrylic acid) four-armed star block copolymer micelles for intercellular drug release. J Bioact Comp Polym 30:349–365

    Article  Google Scholar 

  32. Gao C, Vo CD, Jin YZ, Li W, Armes SP (2005) Multihydroxy polymer-functionalized carbon nanotubes: synthesis, derivatization, and metal loading. Macromolecules 38:8634–8648

    Article  Google Scholar 

  33. Sarafraz-Yazdi A, Amiri A, Rounaghi G, Hosseini HE (2011) A novel solid-phase microextraction using coated fiber based sol–gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flam ionization detector. J Chromatogr A 1218:5757–5764

    Article  Google Scholar 

  34. Wen Y, Wu H, Chen S, Lu Y, Shen H, Jia N (2009) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in poly(ethylene glycol) grafted multi-walled carbon nanotubes. Electrochim Acta 54:7078–7084

    Article  Google Scholar 

  35. Kong H, Gao C, Yan D (2004) Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc 126:412–413

    Article  Google Scholar 

  36. Wu HX, Tong R, Qiu XQ, Yang HF, Lin YH, Cai RF, Qian SX (2007) Functionalization of multiwalled carbon nanotubes with polystyrene under atom transfer radical polymerization conditions. Carbon 45:152–159

    Article  Google Scholar 

  37. Ma XT, Zhan HJ (2008) Study of DMF catalytic air epoxidation of styrene under mild conditions. China Surfactant Deterg Cosmet 38:319–321

    Google Scholar 

  38. Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128:1412–1413

    Article  Google Scholar 

  39. Zhang T, Mubeen S, Myung NV, Deshusses MA (2008) Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19:332001–332014

    Article  Google Scholar 

  40. Kar P, Choudhury A (2013) Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sens Actuators B 183:25–33

    Article  Google Scholar 

  41. Shang S, Zeng W, Tao X (2012) Investigation on the electrical response behaviors of multiwalled carbon nanotube/polyurethane composite in organic solvent vapors. Sens Actuators B 166–167:330–337

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant NSFC 21273142 and 21172138).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ling Luo or Feng Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YL., Bai, RX., Xu, F. et al. Novel multiwalled carbon nanotube grafted with polyethylene glycol-block-polystyrene nanohybrids: ATRP synthesis and detection of benzene vapor. J Mater Sci 51, 1363–1375 (2016). https://doi.org/10.1007/s10853-015-9455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9455-5

Keywords

Navigation