Skip to main content
Log in

Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photoelectrochemical applications of photonic crystals are gathering great interests both from physicists and chemists. Here, we theoretically and experimentally present two-dimensional photonic bandgap (2D-PBG) structures based on rutile titanium dioxide (TiO2) single crystal that is a famous material because of the photoelectrochemical ability. The structures were the arrays of hollow hexagonal rutile TiO2 pillars in contact with air or a typical nonaqueous electrolyte solution, acetonitrile. Since the TiO2 refractive indices exhibit a strong dispersive behavior, the bandgap width was discussed from the viewpoint of the refractive index map that would be helpful for the real application of this structure. The 2D-PBG structures for both infrared light and visible light were fabricated by our established lithography technique for rutile TiO2 with and without Nb doping, i.e., photocatalytic TiO2 and high electron conductive TiO2, respectively. These structures show characteristic absorbance peaks or reflectance dips at wavelengths predicted by our theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sakoda K (2001) Optical properties of photonic crystals. Springer, New York

    Book  Google Scholar 

  2. Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: molding the flow of light. Princeton University Press, New Jersey

    Google Scholar 

  3. Busch K, Lölkes S, Wehrspohn RB, Föhl H (2004) Photonic crystal. Wiley, Weinheim

    Book  Google Scholar 

  4. Arpin KA, Mihi A, Johnson HT et al (2010) Multidimensional architectures for functional optical devices. Adv Mater 22:1084–1101

    Article  Google Scholar 

  5. Akahane Y, Asano T, Song B-S, Noda S (2003) High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425:944−947

    Article  Google Scholar 

  6. Ryu H-Y, Kwon S-H, Lee Y-J, Lee Y-H, Kim J-S (2002) Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs. Appl Phys Lett 80:3476–3478

    Article  Google Scholar 

  7. Fang M, Volotinen TT, Kulkarni SK, Belova L, Rao KV (2010) Effect of embedding Fe3O4 nanoparticles in silica spheres on the optical transmission properties of three-dimensional magnetic photonic crystals. J Appl Phys 108:103501

    Article  Google Scholar 

  8. Wierer JJ, David A, Megens MM (2009) III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat Photonics 3:163–169

    Article  Google Scholar 

  9. Mekis A, Chen JC, Kurland I, Fan S, Villeneuve PR, Joannopoulos JD (1996) High Transmission through sharp bends in photonic crystal waveguides. Phys Rev Lett 77:3787

    Article  Google Scholar 

  10. Miyai E, Noda S (2004) Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide. J Opt Soc Am B 21:67–72

    Article  Google Scholar 

  11. Cregan RF, Mangan BJ, Knight JC et al (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539

    Article  Google Scholar 

  12. Chen JSY, Euser TG, Farrer NJ, Sadler PJ, Scharrer M, Russell PSJ (2010) Photochemistry in photonic crystal fiber nanoreactors. Chem Eur J 16:5607–5612

    Article  Google Scholar 

  13. Chen JIL, Loso E, Ebrahim N, Ozin GA (2008) Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. J Am Chem Soc 130:5420–5421

    Article  Google Scholar 

  14. Matsushita SI, Fukuda N, Shimomura M (2005) Photochemically functional photonic crystals prepared by using a two-dimensional particle-array template. Colloid Surf A 257–258:15–17

    Article  Google Scholar 

  15. Wang P, Zakeeruddin SM, Humphry-Baker R, Moser JE, Grätzel M (2003) Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells. Adv Mater 15:2101–2104

    Article  Google Scholar 

  16. Zhang D, Yoshida T, Minoura H (2003) Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv Mater 15:814–817

    Article  Google Scholar 

  17. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  Google Scholar 

  18. Nishimura S, Abrams N, Lewis BA et al (2003) Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J Am Chem Soc 125:6306–6310

    Article  Google Scholar 

  19. Dorado LA, Depine RA, Schinca D, Lozano G, Míguez H (2008) Experimental and theoretical analysis of the intensity of beams diffracted by three-dimensional photonic crystals. Phys Rev B 78:075102

    Article  Google Scholar 

  20. Tao C-A, Zhu W, An Q, Li G (2010) Theoretical demonstration of efficiency enhancement of dye-sensitized solar cells with double-inverse opal as mirrors. J Phys Chem C 114:10641–10647

    Article  Google Scholar 

  21. Guo M, Xie K, Lin J et al (2012) Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell. Energy Environ Sci 5:9881–9888

    Article  Google Scholar 

  22. Yip CT, Huang H, Zhou L et al (2011) Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach. Adv Mater 23:5624–5628

    Article  Google Scholar 

  23. Kim S-H, Lee SY, Yang S-M, Yi G-R (2011) Self-assembled colloidal structures for photonics. NPG Asia Mater. 3:25–33

    Article  Google Scholar 

  24. Matsushita S, Miwa T, Fujishima A (1997) Preparation of a new nanostructured TiO2 surface using a two-dimensional array-based template. Chem Lett 9:925–926

    Article  Google Scholar 

  25. Matsushita SI, Miwa T, Tryk DA, Fujishima A (1998) New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles. Langmuir 14:6441–6447

    Article  Google Scholar 

  26. Frölich A, Fischer J, Zebrowski T, Busch K, Wegener M (2013) Titania woodpiles with complete three-dimensional photonic bandgaps in the visible. Adv Mater 25:3588–3592

    Article  Google Scholar 

  27. Matsushita S, Hayashi M, Isobe T, Nakajima A (2012) Simulation design for rutile-TiO2 nanostructures with a large complete-photonic bandgap in electrolytes. Crystals 2:1483–1491

    Article  Google Scholar 

  28. Matsushita S, Suavet O, Hashiba H (2010) Full-photonic-bandgap structures for prospective dye-sensitized solar cells. Electrochim Acta 55:2398–2403

    Article  Google Scholar 

  29. Matsushita S, Fujiwara R, Shimomura M (2008) Calculation of photonic energy bands of self-assembled-type TiO2 photonic crystals as dye-sensitized solar battery. Colloid Surf A 313–314:617–620

    Article  Google Scholar 

  30. Rams J, Tejeda A, Cabrera JM (1997) Refractive indices of rutile as a function of temperature and wavelength. J Appl Phys 82:994–997

    Article  Google Scholar 

  31. Akihiro M, Kunio N, Mina S et al (2014) Angled etching of (001) rutile Nb–TiO2 substrate using SF6-based capacitively coupled plasma reactive ion etching. Jpn J Appl Phys 53:06JF02

    Article  Google Scholar 

  32. Matsutani A, Hayashi M, Morii Y et al (2012) SF6-based deep reactive ion etching of (001) rutile TiO2 substrate for photonic crystal structure with wide complete photonic band gap. Jpn J Appl Phys 51:098002

    Google Scholar 

  33. Junesch J, Sannomiya T (2014) Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl Mater Interfaces 6:6322–6331

    Article  Google Scholar 

  34. Cronemeyer DC (1952) Electrical and optical properties of rutile single crystals. Phys Rev 87:876

    Article  Google Scholar 

  35. Han K, Kim JH (2011) Reflectance modulation of transparent multilayer thin films for energy efficient window applications. Mater Lett 65:2466–2469

    Article  Google Scholar 

  36. Pereira ALJ, Filho PNL, Acuna J et al (2012) Enhancement of optical absorption by modulation of the oxygen flow of TiO2 films deposited by reactive sputtering. J Appl Phys 111:113513

    Article  Google Scholar 

  37. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  38. Kay A, Humphry-Baker R, Graetzel M (1994) Artificial photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives. J Phys Chem 98:952

    Article  Google Scholar 

  39. Kato G, Nishiyama C, Yabuta T et al (2014) Pore size dependence of self-assembled type photonic crystal on dye-sensitized solar cells efficiency utilising Chlorine e6. J Porous Mater 21:165–176

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Murata Science Foundation, the Asahi Glass Foundation, the Shimadzu Science Foundation, and the Japan Society for the Promotion of Science (JSPS) KAKENHI 25420707 and 24108708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Matsushita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, S., Matsutani, A., Morii, Y. et al. Calculation and fabrication of two-dimensional complete photonic bandgap structures composed of rutile TiO2 single crystals in air/liquid. J Mater Sci 51, 1066–1073 (2016). https://doi.org/10.1007/s10853-015-9436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9436-8

Keywords

Navigation