Skip to main content
Log in

Preparation and characterization of ammonium-functionalized polysulfone/Al2O3 composite membranes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the current study, a quaternary ammonium polysulfone/Al2O3 composite anion exchange membrane was prepared. This membrane was synthesized using different Al2O3 powder loadings (1–4 wt%) and a casting procedure to avoid the use of hazardous materials. The ammonium-functionalized polysulfones were characterized using 1H NMR and FTIR analyses, and the presence of Al2O3 in the polymeric matrix was confirmed by EDS. The resulting composite membranes exhibited high thermal stability for typical fuel cell operation temperatures below 100 °C. The presence of Al2O3 increased the water absorption and the ion exchange capacity of the membranes. The ionic conductivity of the membranes in dilute aqueous solutions of potassium hydroxide (10−4–10−1 M) was studied using impedance spectroscopy. The results indicated that the ionic conductivity was twice as high when a loading of 4 % Al2O3 was added. The activation energies for ionic transport ranged from 58 to 63 kJ mol−1. The introduction of Al2O3 significantly increased the mechanical strength but decreased the elongation at break, indicating an interaction between the inorganic nanoparticles and the polymer. Therefore, these results suggest that these composite membranes have the potential for use as solid anion exchange electrolytes in low temperature fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steele BCH (2001) Material science and engineering: the enabling technology for the commercialisation of fuel cell systems. J Mater Sci 36:1053–1068. doi:10.1023/A:1004853019349

    Article  Google Scholar 

  2. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    Article  Google Scholar 

  3. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  Google Scholar 

  4. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27:507–526

    Article  Google Scholar 

  5. Robertson NJ, Kostalik HA IV, Clark TJ, Mutolo PF, Abruña HD, Coates GW (2010) Tunable high performance crosslinked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400–3404

    Article  Google Scholar 

  6. Lu S, Pan J, Huang A, Zhuang L, Lu J (2008) Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc Natl Acad Sci USA 105:20611–20614

    Article  Google Scholar 

  7. Morandi CG, Peach R, Krieg HM, Kerres J (2015) Novel morpholinium-functionalized anion-exchange PBI-polymer blends. J Mater Chem A 3(1110):1120

    Google Scholar 

  8. Si Z, Sun Z, Gu F, Qiu L, Yan F (2014) Alkaline stable imidazolium-based ionomers containing poly(arylene ether sulfone) side chains for alkaline anion exchange membranes. J Mater Chem A 2:4413–4421

    Article  Google Scholar 

  9. Li Q, Liu L, Miao Q, Jin B, Bai R (2014) A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chem Commun 50:2791–2793

    Article  Google Scholar 

  10. Di Vona ML, Narducci R, Pasquini L, Pelzer K, Knauth P (2014) Anion-conducting ionomers: study of type of functionalizing amine and macromolecular cross-linking. Int J Hydrogen Energy 39:14039–14049

    Article  Google Scholar 

  11. Maurya S, Shin SH, Kim MK, Yun SH, Moon SH (2013) Stability of composite anion exchange membranes with various functional groups and their performance for energy conversion. J Membrane Sci 443:28–35

    Article  Google Scholar 

  12. Pan J, Lu S, Li Y, Huang A, Zhuang L, Lu J (2010) High-perfomance alkaline polymer electrolyte for fuel cell applications. Adv Funct Mater 20:312–319

    Article  Google Scholar 

  13. Wang J, Li S, Zhang S (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896

    Article  Google Scholar 

  14. Yan X, He G, Gu S, Wu X, Du L, Wang Y (2012) Imidazolium-functionalized polysulfone hydroxide exchange membranes for potential applications in alkaline membrane direct alcohol fuel cells. Int J Hydrogen Energy 37:5216–5224

    Article  Google Scholar 

  15. Si ZH, Sun Z, Gu FL, Qiu LH, Yan F (2014) Alkaline stable imidazolium-based ionomers containing poly(arylene ether sulfone) side chains for alkaline anion exchange membranes. J Mater Chem A 2:4413–4421

    Article  Google Scholar 

  16. Couture G, Alaaeddine A, Boschet F, Ameduri B (2011) Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog Polym Sci 36:1521–1557

    Article  Google Scholar 

  17. Nguyen TBL, Lee KH, Lee BT (2011) Fabrication of photocatalytic PVA-SiO2 nano-fibrous hybrid membrane using the electro-spinning method. J Mater Sci 46:5615–5620. doi:10.1007/s10853-011-5511-y

    Article  Google Scholar 

  18. Maximous N, Nakhla G, Wan W, Wong K (2010) Performance of a novel ZrO2/PES membrane for wastewater filtration. J Membrane Sci 352:222–230

    Article  Google Scholar 

  19. Chen SH, Liou RM, Lai CL, Hung MY, Tsai MH, Huang SL (2008) Embedded nano-iron polysulfone membrane for dehydration of the ethanol/water mixtures by pervaporation. Desalination 234:221–231

    Article  Google Scholar 

  20. Yu S, Zuo X, Bao R, Xu X, Wang J, Xu J (2009) Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane. Polymer 50:553–559

    Article  Google Scholar 

  21. Lee C, Jo SM, Choi J, Baek KY, Truong YB, Kyratzis IL, Shul YG (2013) SiO2/sulfonated poly ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. J Mater Sci 48:3665–3671. doi:10.1007/s10853-013-7162-7

    Article  Google Scholar 

  22. Herrero M, Martos AM, Várez A, Galván JC, Levenfeld B (2013) Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuel cell application. Int J Hydrogen Energy 39:4016–4022

    Article  Google Scholar 

  23. Vinodh R, Purushothaman M, Sangeetha D (2011) Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications. Int J Hydrogen Energy 36:7291–7302

    Article  Google Scholar 

  24. Sang S, Zhang J, Wu Q, Liao Y (2007) Influences of bentonite on conductivity of composite solid alkaline polymer electrolyte PVA-bentonite-KOH-H2O. Electrochim Acta 52:7315–7321

    Article  Google Scholar 

  25. Nonjola PT, Mathe MK, Modibedi RM (2013) Chemical modification of polysulfone: composite anionic exchange membrane with TiO2 nano-particles. Int J Hydrogen Energy 38:5115–5121

    Article  Google Scholar 

  26. Kamal KK, Srivastava S, Rahaman A, Nayak SK (2008) Acrylonitrile-butadiene-styrene nanocomposites filled with nanosized alumina. Polym Compos 29:489–499

    Article  Google Scholar 

  27. Trueba M, Trasatti SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403

    Article  Google Scholar 

  28. Smuleac V, Butterfield DA, Sikdar SK, Varma RS, Bhattacharyya D (2005) Polythiol-functionalized alumina membranes for mercury capture. J Membrane Sci 251:169–178

    Article  Google Scholar 

  29. Mohamad AA, Arof AK (2007) Plasticized alkaline solid polymer electrolyte system. Mater Lett 61:3096–3099

    Article  Google Scholar 

  30. Mallakpour S, Dinari M (2013) Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al2O3 nanoparticles. J Reinf Plast Comp 32:217–224

    Article  Google Scholar 

  31. Mojtahedi YM, Mehrnia MR, Homayoonfal M (2013) Fabrication of Al2O3/PSf nanocomposite membranes: efficiency comparison of coating and blending methods in modification of filtration performance. Desalin Water Treat 51:6736–6742

    Article  Google Scholar 

  32. Pantamas N, Khonkeng C, Krachodnok S, Chaisena A (2012) Ecofriendly and simplified synthetic route for polysulfone-based solid-state alkaline electrolyte membrane. Am J Appl Sci 9:1577–1582

    Article  Google Scholar 

  33. Benavente J, Zhang X, Garcia Valls R (2005) Modification of polysulfone membranes with polyethylene glycol and lignosulfate: electrical characterization by impedance spectroscopy measurements. J Colloid Int Sci 285:273–280

    Article  Google Scholar 

  34. Avram E, Brebu MA, Warshawsky A, Vasile C (2000) Polymers with pendant functional groups. V. Thermooxidative and thermal behavior of chloromethylated polysulfones. Polym Degrad Stabil 69:175–181

    Article  Google Scholar 

  35. Zhou J, Unlu M, Vega JA, Kohl PA (2009) Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells. J Power Sources 190:285–292

    Article  Google Scholar 

  36. Singh S, Jasti A, Kumar M, Shahi VK (2010) A green method for the preparation Of highly stable organic-inorganic hybrid anion-exchange membranes in aqueous media for electrochemical processes. Polym Chem 1:1302–1312

    Article  Google Scholar 

  37. Costa TMH, Gallas MR, Benvenutti EV, da Jornada JAH (1999) Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction. J Phys Chem B 103:4278–4284

    Article  Google Scholar 

  38. Arroyo y De Dompablo ME, García J, Várez A, García-Alvarado F (2002) Electrode characteristics of Li2Ti3O7-ramsdellite processed by mechanical grinding. J Mater Sci 37:3981–3986. doi:10.1023/A:1019688413180

    Article  Google Scholar 

  39. Aranda P, Galván JC, Casal B, Ruiz-Hitzky E (1994) Electrochemical characterization of composite membranes based on crown-ethers intercalated into montmorillonite. Colloid Polym Sci 272:712–720

    Article  Google Scholar 

  40. Park JS, Park JW, Ruckenstein E (2001) A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/methylcellulose blends. J Appl Polym Sci 80:1825–1834

    Article  Google Scholar 

  41. Zhou T, Zhang J, Jingfu J, Jiang G, Zhang J, Qiao J (2013) Poly(ethylene glycol) plasticized poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) as alkaline anion-exchange membrane for potential fuel cell applications. Synth Met 167:43–50

    Article  Google Scholar 

  42. Merinov BV, Goddard WA III (2013) Computational modeling of structure and OH-anion diffusion in quaternary ammonium polysulfone hydroxide-polymer electrolyte for application in electrochemical devices. J Membrane Sci 431:79–85

    Article  Google Scholar 

  43. Sillanpää AJ, Päivärinta JT, Hotokka MJ, Rosenholm JB, Laasonen KE (2001) A computational study of aluminium hydroxide solvation. J Phys Chem A 105:10111–10122

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Projects from the regional government (Comunidad de Madrid through MATERYENER3CM S2013/MIT-2753) and Spanish Government, MINECO (MAT2013-46452-C4-3R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teresa Pérez-Prior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Prior, M.T., García-García, T., Várez, A. et al. Preparation and characterization of ammonium-functionalized polysulfone/Al2O3 composite membranes. J Mater Sci 50, 5893–5903 (2015). https://doi.org/10.1007/s10853-015-9139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9139-1

Keywords

Navigation