Skip to main content
Log in

Mean stress sensitivity of spring steel in the very high cycle fatigue regime

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of load ratio on the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) properties of shot-peened VDSiCr spring steel is investigated. S–N curves are measured with ultrasonic fatigue testing equipment at load ratio R = −1, R = 0.1 and R = 0.5 up to 1010 cycles. Failures either occur below 5 × 106 or above 5 × 108 cycles. In the HCF regime cracks start exclusively at the surface. In the VHCF regime crack initiation occurs solely in the interior, at grain boundaries, inclusions or (rarely) in the matrix. The S–N curves continue to decrease beyond 109 cycles, most pronounced for R = −1 where the mean cyclic strength at 1010 cycles is 5 % lower than at 109 cycles. VHCF strength presented in a Haigh diagram can be very well approximated with a straight line. The mean stress sensitivity factor is M = 0.47 for load ratios between R = −1 and R = 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Naito T, Ueda H, Kikuchui M (1984) Fatigue behavior of carburized steel with internal oxides and nonmartensitic micro-structure near the surface. Metall Trans 15A:1431–1436

    Article  Google Scholar 

  2. Asami K, Sugiyama Y (1985) Fatigue strength of various surface hardened steels. J Heat Treat Technol Assoc 25:147–150

    Google Scholar 

  3. Murakami Y, Takada M, Toriyama T (1998) Super-long life tension–compression fatigue properties of quenched and tempered 0.46 % carbon steel. Int J Fatigue 16:661–667

    Article  Google Scholar 

  4. Nishijima S, Kanazawa K (1999) Stepwise S–N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract Eng Mater Struct 22:601–607

    Article  Google Scholar 

  5. Wang QY, Berard JY, Rathery S, Bathias C (1999) High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue Fract Eng Mater Struct 22:673–677

    Article  Google Scholar 

  6. Shiozawa K, Lu L, Ishihara S (2001) S–N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 24:781–790

    Article  Google Scholar 

  7. Ochi Y, Matsumura T, Masaki K, Yoshida S (2002) High-cycle rotating bending fatigue property in very long life regime of high-strength steel. Fatigue Fract Eng Mater Struct 25:823–830

    Article  Google Scholar 

  8. Sakai T, Sato Y, Oguma N (2002) Characteristic S–N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract Eng Mater Struct 25:765–773

    Article  Google Scholar 

  9. Abe T, Furuya Y, Matsuoka S (2004) Gigacycle fatigue properties of 1800 MPa class spring steel. Fatigue Fract Eng Mater Struct 27:159–167

    Article  Google Scholar 

  10. Chai G (2006) The formation of subsurface non-defect fatigue crack origins. Int J Fatigue 28:1533–1539

    Article  Google Scholar 

  11. Furuya Y, Hirukawa H, Kimura T, Hayaishi M (2007) Gigacycle fatigue properties of high-strength steels according to inclusion and ODA sizes. Metall Trans A 38A:1722–1730

    Article  Google Scholar 

  12. Yu Y, Gu JL, Bai BZ, Liu YB, Li SX (2009) Very high cycle fatigue mechanism of carbide-free bainite/martensite steel micro-alloyed with Nb. Mater Sci Eng A 527:212–217

    Article  Google Scholar 

  13. Li W, Sakai T, Wakita M, Mimura S (2012) Effect of surface finishing and loading condition on competing failure mode of clean spring steel in very high cycle fatigue regime. Mater Sci Eng A 552:301–309

    Article  Google Scholar 

  14. Mayer H, Haydn W, Schuller R, Issler S, Furtner B, Bacher-Höchst M (2009) Very high cycle fatigue properties of bainitic high-carbon–chromium steel. Int J Fatigue 31:242–249

    Article  Google Scholar 

  15. Li W, Sakai T, Wakita M, Mimura S (2014) Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel. Int J Fatigue 60:48–56

    Article  Google Scholar 

  16. Li SX (2012) Effects of inclusions on very high cycle fatigue properties of high strength steels. Int Mater Rev 57:92–114

    Article  Google Scholar 

  17. Sun C, Lei Z, Xie J, Hong Y (2013) Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure. Int J Fatigue 48:19–27

    Article  Google Scholar 

  18. Zimmermann M (2012) Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int Mater Rev 57:73–91

    Article  Google Scholar 

  19. Sakai T, Sato Y, Nagano Y, Takeda M, Oguma N (2006) Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading. Int J Fatigue 28:1547–1554

    Article  Google Scholar 

  20. Shiozawa K, Hasegawa T, Kashiwagi Y, Lu L (2009) Very high cycle fatigue properties of bearing steel under axial loading condition. Int J Fatigue 31:880–888

    Article  Google Scholar 

  21. Nakajima M, Tokaji K, Itoga H, Shimizu T (2010) Effect of loading condition on very high cycle fatigue behavior in a high strength steel. Int J Fatigue 32:475–480

    Article  Google Scholar 

  22. Karsch T, Bomas H, Zoch HW, Mändl S (2014) Influence of hydrogen content and microstructure on the fatigue behaviour of steel SAE 52100 in the VHCF regime. Int J Fatigue 60:74–89

    Article  Google Scholar 

  23. Sander M, Müller T, Lebahn J (2014) Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in the VHCF regime. Int J Fatigue 62:10–20

    Article  Google Scholar 

  24. Kovacs S, Beck T, Singheiser L (2013) Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime. Int J Fatigue 49:90–99

    Article  Google Scholar 

  25. Schönbauer BM, Perlega A, Karr UP, Gandy D, Stanzl-Tschegg SE (2015) Pit-to-crack transition under cyclic loading in 12 % Cr steam turbine blade steel. Int J Fatigue 76:19–32

    Article  Google Scholar 

  26. Murakami Y, Nomotomo T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the super long life regime (>107 cycles). Part I: influence of hydrogen trapped by inclusions. Fatigue Fract Eng Mater Struct 23:893–902

    Article  Google Scholar 

  27. Murakami Y, Nomotomo T, Ueda T, Murakami Y (2000) On the mechanism of fatigue failure in the super long life regime (>107 cycles). Part II: a fractographic investigation. Fatigue Fract Eng Mater Struct 23:903–910

    Article  Google Scholar 

  28. Tanaka K, Akiniwa Y (2002) Fatigue crack propagation behaviour derived from S–N data in very high cycle regime. Fatigue Fract Eng Mater Struct 25:775–784

    Article  Google Scholar 

  29. Hong Y, Lei Z, Sun C, Zhao A (2014) Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. Int J Fatigue 58:144–151

    Article  Google Scholar 

  30. Zhao A, Xie J, Sun C, Lei Z, Hong Y (2011) Prediction of threshold value for FGA formation. Mater Sci Eng A 528:6871–6877

    Google Scholar 

  31. Ochi Y, Masaki K, Matsumura T, Sekino T (2001) Effect of shot-peening treatment on high cycle fatigue property of ductile cast iron. Int J Fatigue 23:441–448

    Article  Google Scholar 

  32. Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater Sci Eng A 263:210–216

    Article  Google Scholar 

  33. Rios ERDL, Trull M, Levers A (2000) Modelling fatigue crack growth in shot-peened components of Al 2024-T351. Fatigue Fract Eng Mater Struct 23:709–716

    Article  Google Scholar 

  34. Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon–chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822

    Article  Google Scholar 

  35. Schuller R, Mayer H, Fayard A, Hahn M, Bacher-Höchst M (2013) Very high cycle fatigue of VDSiCr spring steel under torsional and axial loading. Mater Werkst 44:282–289

    Article  Google Scholar 

  36. Mayer H, Schuller R, Karr U, Irrasch D, Fitzka M, Hahn M, Bacher-Höchst M (2015) Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios. Int J Fatigue 70:322–327

    Article  Google Scholar 

  37. Mayer H, Fitzka M, Schuller R (2013) Constant and variable amplitude ultrasonic fatigue of 2024 T351 aluminium alloy at different load ratios. Ultrasonics 53:1425–1432

    Article  Google Scholar 

  38. Maenning WW (1997) Planning and evaluation of fatigue tests. In: Lampman SR, Davidson GM, Reidenbach F, Boring RL, Hammel A, Henry SD, Scott WW jr (eds) ASM handbook fatigue and fracture. ASM International, Materials Park, pp 303–313

    Google Scholar 

  39. Itoga H, Tokaji K, Nakajima M, Ko H-N (2003) Effect of surface roughness on step-wise S–N characteristics in high strength steel. Int J Fatigue 25:379–385

    Article  Google Scholar 

  40. Tokaji K, Ko H-N, Nakajima M, Itoga H (2003) Effects of humidity on crack initiation mechanism and associated S–N characteristics in very high strength steels. Mater Sci Eng A A345:197–206

    Article  Google Scholar 

  41. Zhao A, Xie J, Sun C, Lei Z, Hong Y (2012) Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. Int J Fatigue 38:46–56

    Article  Google Scholar 

  42. Shiozawa K, Lu L (2008) Internal fatigue failure mechanism of high strength steels in the gigacycle regime. Key Eng Mater 378–379:65–80

    Article  Google Scholar 

  43. Sakai T (2007) Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. In: Allison JE, Jones JW, Larsen JM, Ritchie RO (eds) 4th international conference on very high cycle fatigue, TMS, Warrendale, Ann Arbor, pp 3–12

  44. Nakajima M, Tokaji K, Itoga H, Ko H-N (2003) Morphology of step-wise S–N curves depending on work-hardened layer and humidity in a high-strength steel. Fatigue Fract Eng Mater Struct 26:1113–1118

    Article  Google Scholar 

  45. Murakami Y, Yokoyama NN, Nagata J (2002) Mechanism of fatigue failure in ultralong life regime. Fatigue Fract Eng Mater Struct 25:735–746

    Article  Google Scholar 

  46. Mayer H, Schuller R, Fitzka M, Tran D, Pennings B (2014) Very high cycle fatigue of nitrided 18Ni maraging steel sheet. Int J Fatigue 64:140–146

    Article  Google Scholar 

  47. Berger C, Kaiser B (2006) Results of very high cycle fatigue tests on helical compression springs. Int J Fatigue 28:1658–1663

    Article  Google Scholar 

  48. Kaiser B, Pyttel B, Berger C (2011) VHCF-behavior of helical compression springs made of different materials. Int J Fatigue 33:23–32

    Article  Google Scholar 

  49. Murakami Y, Endo M (1992) The area parameter model for small defects and nonmetallic inclusions in fatigue strength: experimental evidences and applications. In: Blom AF, Beevers CJ (eds) Theoretical concepts and numerical analysis of fatigue. Engineering Materials Advisory Services Ltd., Cradley Heath, Warley, Birmingham, pp 51–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuller, R., Karr, U., Irrasch, D. et al. Mean stress sensitivity of spring steel in the very high cycle fatigue regime. J Mater Sci 50, 5514–5523 (2015). https://doi.org/10.1007/s10853-015-9098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9098-6

Keywords

Navigation