Skip to main content
Log in

Analysis of the crystallographic and magnetic structures of the Tb0.1Pr0.9Al2 and Tb0.25Pr0.75Al2 magnetocaloric compounds by means of neutron scattering

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Neutron powder diffraction and inelastic neutron scattering data were used to simulate and understand the magnetization and heat capacity curves of the pseudobinary Tb x Pr1−x Al2, with x = 0.10 and 0.25, as a function of temperature. From the Rietveld analysis, we concluded that no crystallographic transition occurs in these samples, and the high symmetry of the magnetic structure was confirmed. Moreover, the different contributions from the reflection planes could be related to the known exchange bias-like effect characteristic for the x = 0.25 sample, also suggesting the existence of some rearrangement of the magnetic moments or even the presence of spin frustration in this system. Finally, the obtained set of theoretical parameters using the mean field approach for the two systems consisting of two sublattices allowed the experimental data to be described and to explain their physical behaviors. The ensemble of our results leads us to affirm that the quadrupolar interactions as well as an existence of some rearrangement of the magnetic moments or a frustration play an important role in the strong unidirectional anisotropy and the exchange bias-like effect observed in this pseudobinary system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tishin AM, Spichkin YI (2014) Recent progress in magnetocaloric effect: mechanisms and potential applications. Int J Refrig 37:223–229. doi:10.1016/j.ijrefrig.2013.09.012

    Article  Google Scholar 

  2. Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. IoP - Institute of Physics Publishing, UK

    Book  Google Scholar 

  3. de Sousa VSR, Carvalho AMG, Plaza EJR et al (2011) Investigation on the magnetocaloric effect in (Gd, Pr)Al2 solid solutions. J Magn Magn Mater 323:794–798. doi:10.1016/j.jmmm.2010.10.046

    Article  Google Scholar 

  4. Kulkarni PD, Thamizhavel A, Rakhecha VC et al (2009) Magnetic compensation phenomenon and the sign reversal in the exchange bias field in a single crystal of Nd0.75Ho0.25Al2. Europhys Lett 86:47003. doi:10.1209/0295-5075/86/47003

    Article  Google Scholar 

  5. Kulkarni PD, Nigam AK, Ramakrishnan S, Grover AK (2010) Field induced changes across magnetic compensation in Pr(1−x)Gd(x)Al(2) alloys. http://arxiv.org/abs/1008.3782v1

  6. Lacour D, Jaffres H, Dau FNV et al (2002) Field sensing using the magnetoresistance of IrMn exchange-biased tunnel junctions. J Appl Phys 91:4655–4658. doi:10.1063/1.1450050

    Article  Google Scholar 

  7. Daughton J, Brown J, Chen E et al (1994) Magnetic field sensors using GMR multilayer. IEEE Trans Magn 30:4608–4610. doi:10.1109/20.334164

    Article  Google Scholar 

  8. Lenz J, Edelstein S (2006) Magnetic sensors and their applications. IEEE Sens J 6:631–649. doi:10.1109/JSEN.2006.874493

    Article  Google Scholar 

  9. Tsang C, Fontana RE, Lin T et al (1994) Design, fabrication and testing of spin-valve read heads for high density recording. IEEE Trans Magn 30:3801–3806. doi:10.1109/20.333909

    Article  Google Scholar 

  10. Tsang C (1984) Magnetics of small magnetoresistive sensors (invited). J Appl Phys 55:2226–2231. doi:10.1063/1.333619

    Article  Google Scholar 

  11. Ross RG Jr (2001) Cryocoolers. Kluwer Academic Publishers/Plenum Publishers, New York

    Google Scholar 

  12. Julio CGT, Heloisa NB, Sven L et al (2014) Efficient materials for cryogenic refrigeration: The interplay of the magnetocaloric effect and electrical resistivity in Tb(x)Pr( 1−x)Al2 ferrimagnetic compounds can help realize more efficient and advanced materials for cryogenic refrigeration. Magnetics Technology International Magazine, pp. 58–61

  13. Jensen J, Mackintosh AR (1991) Rare earth magnetism: structures and excitations. Oxford University Press, Oxford

    Google Scholar 

  14. Purwins HG, Leson A (1990) Magnetic properties of (rare earth)Al2 intermetallic compounds. Adv Phys 39:309–403. doi:10.1080/00018739000101511

    Article  Google Scholar 

  15. Tedesco JCG, Pires MJM, Carvalho AMG et al (2013) Exchange-bias-like effect in Pr0.75Tb0.25Al2 and Pr0.7Tb0.3Al2 samples. J Magn Magn Mater 339:6–10. doi:10.1016/j.jmmm.2013.02.049

    Article  Google Scholar 

  16. Kulkarni PD, Venkatesh S, Thamizhavel A et al (2009) Exchange bias and its phase reversal in zero magnetization admixed rare-earth intermetallics. IEEE Trans Magn 45:2902–2906. doi:10.1109/TMAG.2009.2016417

    Article  Google Scholar 

  17. Ovchinnikov Y, Dyugaev A, Fulde P, Kresin V (1997) Properties of a magnetic impurity in a metal. JETP Lett 66:195–201. doi:10.1134/1.567501

    Article  Google Scholar 

  18. Ehrenreich H, Seitz F, Turnbull D (1969) Solid state physics: advances in research and applications. Academic Press, New York

    Google Scholar 

  19. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69. doi:10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  20. Richard D, Ferrand M, Kearley GJ (1996) Analysis and visualisation of neutron-scattering data. J Neutron Res 4:33–39. doi:10.1080/10238169608200065

    Article  Google Scholar 

  21. Olsen CE, Arnold G, Nereson N (1967) Magnetic properties of PrAl2. J Appl Phys 38:1395–1396. doi:10.1063/1.1709636

    Article  Google Scholar 

  22. Nereson N, Olsen C, Arnold G (1968) Magnetic properties of PrAl2 and ErAl2. J Appl Phys 39:4605–4609. doi:10.1063/1.1655809

    Article  Google Scholar 

  23. Oesterreicher H (1974) Constitution of aluminum base rare earth alloys RT2-RAl2 (R = Praseodymium, gadolinium, erbium; T = manganese, iron, cobalt, nickel, copper). Inorg Chem 13:2807–2811. doi:10.1021/ic50142a009

    Article  Google Scholar 

  24. Lea KR, Leask MJM, Wolf WP (1962) The raising of angular momentum degeneracy of f-Electron terms by cubic crystal fields. J Phys Chem Solids 23:1381–1405. doi:10.1016/0022-3697(62)90192-0

    Article  Google Scholar 

  25. de Oliveira NA, von Ranke PJ (2010) Theoretical aspects of the magnetocaloric effect. Phys Rep 489:89–159. doi:10.1016/j.physrep.2009.12.006

    Article  Google Scholar 

  26. Kulkarni PD, Dhar SK, Provino A et al (2010) Self-magnetic compensation and shifted hysteresis loops in ferromagnetic samarium systems. Phys Rev B 82:144411. doi:10.1103/PhysRevB.82.144411

    Article  Google Scholar 

  27. Bak P (1975) Magnetic excitations in rare earth Al2 compounds. AIP Conference Proceedings AIP Publishing, pp 152–158

  28. Frauenheim T, Matz W, Feller G (1979) Crystal field effects in PrAl2. Solid State Commun 29:805–809. doi:10.1016/0038-1098(79)90166-2

    Article  Google Scholar 

Download references

Acknowledgements

JCGT greatly thanks Dimitri Argyriou (ESS, Sweden), Walter Kalceff (University of Technology, Australia), and Vinícius S. R. de Sousa (UERJ, Brazil) for providing fruitful discussions. The research of JCGT at the NBI was supported by the Brazilian Science Without Borders program (funds from CNPq), and further support was also provided by the Brazilian agencies FAPESP, Capes, and CNPq. The work performed at the large-scale facilities by JCGT, NCB and HNB was financed by Danscatt, while measurements performed on E9 (JCGT and HNB) and on TOFTOF (JCGT and NBC) were supported by the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’ Programme, NMI3-II Grant number 283883. The authors gratefully acknowledge ISIS for the provision of beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio C. G. Tedesco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tedesco, J.C.G., Carvalho, A.M.G., Christensen, N.B. et al. Analysis of the crystallographic and magnetic structures of the Tb0.1Pr0.9Al2 and Tb0.25Pr0.75Al2 magnetocaloric compounds by means of neutron scattering. J Mater Sci 50, 2884–2892 (2015). https://doi.org/10.1007/s10853-015-8851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8851-1

Keywords

Navigation