Skip to main content
Log in

Effects of single- and simultaneous triple-ion-beam irradiation on an oxide dispersion-strengthened Fe12Cr steel

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxide dispersion-strengthened (ODS) steels are main candidates for structural applications in future fusion reactors. Understanding their irradiation-induced behaviour is a key in building optimised components with enhanced radiation resistance. In this work, the stability of an ODS Fe12Cr steel was investigated by transmission electron microscopy after single- (Fe4+) and simultaneous triple-ion-beam irradiation (Fe8+, He+ and H+) at room temperature to doses of 4.4 and 10 dpa. The irradiations were accomplished at the JANNUS-Saclay facility. Results after single-ion-beam irradiation were also compared with those from a reference Fe12Cr steel produced following the same route. Analyses focused on determining the irradiation-induced loop size and density in the ODS and reference materials, investigating the grain boundary microchemistry and studying the evolution of the secondary phases present. These experiments show that the Y-rich nanoparticles present in the ODS steel are quite stable under these irradiation conditions although evolution of larger Cr-rich carbides could be taking place. Loop sizes are smaller for the ODS steel than for the reference material and appear to increase with dose. Cr segregates at some of the grain boundaries, though this segregation also occurs in the absence of irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Boutard JL, Alamo A, Lindau R, Rieth M (2008) Fissile core and tritium-breeding blanket: structural materials and their requirements. C R Phys 9:287–302

    Article  Google Scholar 

  2. Ukai S, Fujiwara M (2002) Perspective of ODS alloys application in nuclear environments. J Nucl Mater 307–311:749–757

    Article  Google Scholar 

  3. Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Annu Rev Mater Res 38:471–503

    Article  Google Scholar 

  4. Ramar A, Schäublin R (2013) Analysis of hardening limits of oxide dispersion strengthened steel. J Nucl Mater 432:323–333

    Article  Google Scholar 

  5. Schäublin R, Ramar A, Baluc N, de Castro V, Monge MA, Leguey T, Schmid N, Bonjour C (2006) Microstructural development under irradiation in European ODS ferritic/martensitic steels. J Nucl Mater 351:247–260

    Article  Google Scholar 

  6. Kishimoto H, Yutani K, Kasada R, Kimura A (2006) Helium cavity formation research on oxide dispersed strengthening (ODS) ferritic steels utilizing dual-ion irradiation facility. Fus Eng Des 81:1045–1049

    Article  Google Scholar 

  7. Hsiung LL, Fluss MJ, Tumey SJ, Choi BW, Serruys Y, Willaime F, Fimura A (2010) Phys Rev B 82:184103

    Article  Google Scholar 

  8. Ramar A, Baluc N, Schaüblin R (2007) Effect of irradiation on the microstructure and the mechanical properties of oxide dispersion strengthened low activation ferritic/martensitic steel. J Nucl Mater 367–370:217–221

    Article  Google Scholar 

  9. Robertson C, Panigrahi BK, Balaji S, Kataria S, Serruys Y, Mathon MH, Sundar CS (2012) Particle stability in model ODS steel irradiated up to 100 dpa at 600 C: TEM and nano-indentation investigation. J Nucl Mater 426:240–246

    Article  Google Scholar 

  10. Ukai S (2012) Oxide dispersion strengthened steels. Comp Nucl Mater 4:241–271

    Article  Google Scholar 

  11. Lescoat ML, Ribis J, Gentils A, Kaïtasov O, de Carlan Y, Legris A (2012) In situ TEM study of the stability of nano-oxides in ODS steels under ion-irradiation. J Nucl Mater 428:176–182

    Article  Google Scholar 

  12. Allen T, Gan J, Cole JI, Miller MK, Busby JT, Shutthanandan S, Thevuthasan S (2008) Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation. J Nucl Mater 375:26–37

    Article  Google Scholar 

  13. Certain A, Kuchibhatla S, Shutthanandan V, Hoelzer DT, Allen TR (2013) Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels. J Nucl Mater 434:311–321

    Article  Google Scholar 

  14. Akasaka N, Yamashita S, Yoshitake T, Ukai S, Kimura A (2004) Microstructural changes of neutron irradiated ODS ferritic and martensitic steels. J Nucl Mater 329–333:1053–1056

    Article  Google Scholar 

  15. Schaüblin R, Spätig P, Victoria M (1998) Chemical segregation behavior of the low activation ferritic/martensitic steel F82H. J Nucl Mater 258–263:1350–1355

    Article  Google Scholar 

  16. Nastar M, Soisson F (2012) Radiation-induced segregation. Comp Nucl Mater 1:471–496

    Article  Google Scholar 

  17. Lu Z, Faulkner R, Was G, Wirth BD (2008) Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels. Scripta Mater 58:878–881

    Article  Google Scholar 

  18. de Castro V, Leguey T, Muñoz A, Monge MA, Pareja R, Marquis EA, Lozano-Perez S, Jenkins ML (2009) Microstructural characterization of Y2O3 ODS–Fe–Cr model alloys. J Nucl Mater 386–388:449–452

    Article  Google Scholar 

  19. Serruys Y, Trocellier P, Miro S, Bordas E et al (2009) JANNUS: a multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J Nucl Mater 386–388:967–970

    Article  Google Scholar 

  20. Pellegrino S, Trocellier P, Miro S, Serruys Y et al (2012) The JANNUS Saclay facility: a new platform for materials irradiation, implantation and ion beam analysis. Nucl Instr Method B 273:213–217

    Article  Google Scholar 

  21. Trocellier P, Miro S, Serruys Y, Vaubaillon S, Pellegrino S, Agarwal S, Moll S, Beck L (2014) Study of helium migration in nuclear materials at Jannus-Saclay. Nucl Instrum Methods Phys Res B 331:55–64

    Article  Google Scholar 

  22. Ziegler J, Biersack J, Littmark U (1993) The stopping and power and range of ions in solids. Pergamon Press, New York

    Google Scholar 

  23. Lozano-Perez S (2008) A guide on FIB preparation of samples containing stress corrosion crack tips for TEM and atom-probe analysis. Micron 39:320–328

    Article  Google Scholar 

  24. Williams DB, Carter CB (2009) High energy-loss spectra and images. Transmission electron microscopy: a textbook for materials science. Springer, Berlin, pp 715–739

    Chapter  Google Scholar 

  25. Malis T, Cheng SC, Egerton RF (1998) EELS Log-Ratio Technique for Specimen-Thickness Measurement in the TEM. J Electron Microsc Tech 8:193–200

    Article  Google Scholar 

  26. Schaffer B, Grogger W, Kothleitner G (2004) Automated spatial drift correction for EFTEM image series. Ultramicroscopy 102:27–36

    Article  Google Scholar 

  27. Trebbia P, Bonnet N (1990) EELS elemental mapping with unconventional methods I. Theoretical basis. Image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34:165–178

    Article  Google Scholar 

  28. Lozano-Perez S, de Castro Bernal V, Nicholls RJ (2009) Achieving sub-nanometre particle mapping with energy-filtered TEM. Ultramicroscopy 109:1217–1228

    Article  Google Scholar 

  29. de Castro V, Marquis EA, Lozano-Perez S, Pareja R, Jenkins ML (2011) Stability of nanoscale secondary phases in an oxide dispersion strengthened Fe–12Cr alloy. Acta Mater 59:3927–3936

    Article  Google Scholar 

  30. Marquis EA, Lozano-Perez S, de Castro V (2011) Effects of heavy-ion irradiation on the grain boundary chemistry of an oxide-dispersion strengthened Fe–12 wt% Cr alloy. J Nucl Mater 417:257–261

    Article  Google Scholar 

  31. de Castro V, Lozano-Perez S, Marquis EA, Auger MA, Leguey T, Pareja R (2011) Analytical characterisation of oxide dispersion strengthened steels for fusion reactors. Mater Sci Tech 27:719–723

    Article  Google Scholar 

  32. Klimiankou M, Lindau R, Möslang A (2005) Energy-filtered TEM imaging and EELS study of ODS particles and Argon-filled cavities in ferritic–martensitic steels. Micron 36:1–8

    Article  Google Scholar 

  33. de Castro V, Briceno M, Lozano-Perez S, Trocellier P, Roberts SG, Pareja R (2014) TEM characterization of simultaneous triple ion implanted ODS Fe12Cr. J Nucl Mater 455:157–161

    Article  Google Scholar 

  34. Jenkins ML, Kirk MA (2001) Analysis of small centres of strain: counting and sizing small clusters. Characterization of radiation damage by transmission electron microscopy. Bristol, Institute of Physics, pp 110–128

    Chapter  Google Scholar 

  35. de Castro V, Lozano-Perez S, Marquis EA, Jenkins ML (2009) Microstructural characterization of self ion irradiated ODS and Fe-Cr alloys presented at TMS2009 conference

  36. de Castro V, Briceno M, Jenkins ML, Kirk M, Lozano-Perez S, Roberts SG (2014) In-situ Fe+ ion irradiation of an oxide dispersion strengthened steel. J Phys 522:012032

    Google Scholar 

  37. Watanabe S, Takamatsu Y, Sakaguchi N, Takahashi H (2000) Sink efect of grain boundary on radiation-induced segregation in austenitic stainless steel. J Nucl Mater 283–287:152–156

    Article  Google Scholar 

  38. Hu R, Smith GDW, Marquis EA (2013) Effect of grain boundary orientation on radiation-induced segregation in a Fe–15.2 at.% Cr alloy. Acta Mater 61:3490–3498

    Article  Google Scholar 

  39. Kawatsura K, Nakae T, Takahashi R, Nakai Y et al (1996) Analysis of radiation-induced segregation in type 304 stainless steel by PIXE and RBS channeling. Nucl Instr and Meth B 118:363–366

    Article  Google Scholar 

  40. Pareige P, Miller MK, Stoller RE, Hoelzer DT, Cadel E, Radiguet B (2007) Stability of nanometer-sized oxide clusters in mechanically-alloyed steel under ion-induced displacement cascade damage conditions. J Nucl Mater 360:136–142

    Article  Google Scholar 

  41. Kishimoto H, Yutani K, Kasada R, Hashitomi O, Kimura A (2007) Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels. J Nucl Mater 367–370:179–184

    Article  Google Scholar 

  42. Yamashita S, Yano Y, Ohtsuka S, Yoshitake T, Kaito T, Koyama S, Tanaka T (2013) Irradiation behavior evaluation of oxide dispersion strengthened ferritic steel cladding tubes irradiated in JOYO. J Nucl Mater 442:417–424

    Article  Google Scholar 

  43. Liu C, Yu C, Hashimoto N, Ohnuki S, Ando M, Shiba K, Jitsukawa S (2011) Micro-structure and micro-hardness of ODS steels after ion irradiation. J Nucl Mater 417:270–273

    Article  Google Scholar 

  44. Bentley J, Hoelzer DT, Busby JT, Certain AG, Allen TR, Kaoumi D, Motta AT, Kirk MA (2009) TEM characterization of crept and irradiated nano-structured ferritic alloys. Microsc Microanal 15(S2):1350

    Article  Google Scholar 

  45. Klueh RL, Harries DR (2001) Interfacial segregation and precipitation during irradiation. High-chromium ferritic and martensitic steels for nuclear applications. ASTM, Bridgeport, pp 103–112

    Chapter  Google Scholar 

  46. Tanigawa H, Sakasegawa H, Klueh RL (2005) Irradiation effects on precipitation in reduced-activation ferritic/martensitic steels. Mater Trans 46–3:469–474

    Article  Google Scholar 

  47. Jin SX, Guo LP, Yang Z, Fu DJ et al (2011) Microstructural evolution of P92 ferritic/martensitic steel under argon ion irradiation. Mater Charact 62:136–142

    Article  Google Scholar 

  48. Jia X, Dai Y, Victoria M (2002) The impact of irradiation temperature on the microstructure of F82H martensitic/ferritic steel irradiated in a proton and neutron mixed spectrum. J Nucl Mater 305:1–7

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Ministerio de Ciencia e Innovación (Contract ENE2010-17462), the European Commission through the European Fusion Development Agreement (EFDA), the EPSRC Grant No. EP/H018921/1, the FP7-EU Program under Grant Agreement 312483 - ESTEEM2 (Integrated Infrastructure Initiative-I3) and the Royal Society International Exchanges Scheme 2011/R1 (ref. IE110136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa de Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, V., Lozano-Perez, S., Briceno, M. et al. Effects of single- and simultaneous triple-ion-beam irradiation on an oxide dispersion-strengthened Fe12Cr steel. J Mater Sci 50, 2306–2317 (2015). https://doi.org/10.1007/s10853-014-8794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8794-y

Keywords

Navigation