Skip to main content
Log in

High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel model with low–high–low permittivity hierarchical architecture was designed for high-temperature electromagnetic wave (EM) absorption. Si3N4–SiC/SiO2 composite ceramic was fabricated to verify this model. Dielectric properties of Si3N4–SiC/SiO2 in X-band from 25 to 600 °C were investigated. Due to the special designed structure, the effective permittivity of Si3N4–SiC/SiO2 increases slightly with rising temperature. When the temperature increases from 25 to 600 °C, average \( \varepsilon^{\prime} \) in X-band increases from 5.6 to 6.1, and \( \varepsilon^{\prime\prime} \) increases from 3.0 to 3.8. Because of the weak temperature dependence of effective permittivity, Si3N4–SiC/SiO2 exhibits good coordination between room temperature EM absorption and high-temperature EM absorption. Minimum reflection coefficient (RC) of Si3N4–SiC/SiO2 at room temperature reaches −38.6 dB with the sample thickness of 3.2 mm. At 500 and 600 °C, minimum RC of Si3N4–SiC/SiO2 with certain sample thickness reaches −51.9 and −35.9 dB, respectively. Meanwhile, the effective bandwidth reaches 4.16 and 4.02 GHz, which indicates the promising prospect of Si3N4–SiC/SiO2 for high-temperature EM absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285

    Article  Google Scholar 

  2. Micheli D, Pastore R, Gradoni G et al (2013) Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers. Acta Astronaut 88:61–73

    Article  Google Scholar 

  3. Zhou W, Hu X, Bai X et al (2011) Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4-poly (3,4-ethylenedioxythiophene) microspheres. Acs Appl Mater Interfaces 10:3839–3845

    Article  Google Scholar 

  4. Zhou Y, Zhou W, Qing Y, Luo F, Zhu D (2015) Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites. J Magn Magn Mater 374:345–349

    Article  Google Scholar 

  5. Wang B, Zhang J, Wang T, Qiao L, Li F (2013) Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J Alloy Compd 567:21–25

    Article  Google Scholar 

  6. Liu P, Huang Y, Wang L, Zong M, Zhang W (2013) Hydrothermal synthesis of reduced graphene oxide-Co3O4 composites and the excellent microwave electromagnetic properties. Mater Lett 107:166–169. doi:10.1016/j.matlet.2013.05.136

  7. Qin F, Brosseau C (2012) A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys 111(6):061301

    Article  Google Scholar 

  8. Kumar A, Agarwala V, Singh D (2014) Effect of milling on dielectric and microwave absorption properties of SiC based composites. Ceram Int 40(1):1797–1806

    Article  Google Scholar 

  9. Qin H, Liao Q, Zhang G, Huang Y, Zhang Y (2013) Microwave absorption properties of carbon black and tetrapod-like ZnO whiskers composites. Appl Surf Sci 286:7–11

    Article  Google Scholar 

  10. Xia T, Zhang C, Oyler NA, Chen X (2013) Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater 25(47):6905–6910

    Article  Google Scholar 

  11. Shi XL, Cao MS, Fang XY et al (2008) High-temperature dielectric properties and enhanced temperature-response attenuation of β-MnO2 nanorods. Appl Phys Lett 93(22):223112–223113

    Article  Google Scholar 

  12. Cao MS, Song WL, Hou ZL, Wen B, Yuan J (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3):788–796

    Article  Google Scholar 

  13. Micheli D, Apollo C, Pastore R et al (2012) Temperature, atomic oxygen and outgassing effects on dielectric parameters and electrical properties of nanostructured composite carbon-based materials. Acta Astronaut 76:127–135

    Article  Google Scholar 

  14. Liu H, Tian H, Cheng H (2013) Dielectric properties of SiC fiber-reinforced SiC matrix composites in the temperature range from 25 to 700 °C at frequencies between 8.2 and 18 GHz. J Nucl Mater 432(1):57–60

    Article  Google Scholar 

  15. Peng CH, Shiu CP, Chang CC (2014) High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate–SiC composite. Ceram Int 40(1):47–55

    Article  Google Scholar 

  16. Yin XW, Kong L, Zhang LT, Cheng LF, Travitzky N, Greil P (2014) Electromagnetic properties of Si–C–N based ceramics and composites. Int Mater Rev 59(6):326–355

    Google Scholar 

  17. Rezlescu N, Rezlescu L, Popa PD, Rezlescu E (2000) Influence of additives on the properties of a Ni–Zn ferrite with low Curie point. J Magn Magn Mater 215:194–196

    Article  Google Scholar 

  18. Montiel H, Alvarez G, Gutiérrez MP, Zamorano R, Valenzuela R (2004) Microwave absorption in Ni–Zn ferrites through the Curie transition. J Alloys Compd 369(1):141–143

    Article  Google Scholar 

  19. Igarashi K, Koumoto K, Yanagida H (1987) Ferroelectric Curie points at perovskite-type oxides. J Mater Sci 22(8):2828–2832. doi:10.1007/BF01086478

    Article  Google Scholar 

  20. Ridpath DL, Wright DA (1970) Electrical conductivity of reduced barium titanate crystals. J Mater Sci 5(6):487–491. doi:10.1007/BF00556035

    Article  Google Scholar 

  21. Kong L, Yin XW, Ye F, Li Q, Zhang LT, Cheng LF (2013) Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins. J Phys Chem C 117(5):2135–2146

    Article  Google Scholar 

  22. Wen B, Cao MS, Lu MM et al (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26(21):3484–3489

    Article  Google Scholar 

  23. Kong L, Yin XW, Li Q et al (2013) High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. J Am Ceram Soc 96(7):2211–2217

    Article  Google Scholar 

  24. Song WL, Cao MS, Hou ZL, Yuan J, Fang XY (2009) High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr Mater 61(2):201–204

    Article  Google Scholar 

  25. Yuan J, Yang HJ, Hou ZL et al (2013) Ni-decorated SiC powders: enhanced high-temperature dielectric properties and microwave absorption performance. Powder Technol 237:309–313

    Article  Google Scholar 

  26. Wen B, Cao MS, Hou ZL et al (2013) Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 65:124–139

    Article  Google Scholar 

  27. Yang H, Cao MS, Li Y et al (2014) Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv Opt Mater 2(3):214–219

    Article  Google Scholar 

  28. Dernovsek O, Eberstein M, Schiller WA et al (2001) LTCC glass-ceramic composites for microwave application. J Eur Ceram Soc 21(10):1693–1697

    Article  Google Scholar 

  29. Todd MG, Shi FG (2002) Validation of a novel dielectric constant simulation model and the determination of its physical parameters. Microelectron J 33(8):627–632

    Article  Google Scholar 

  30. Song WL, Cao MS, Hou ZL et al (2009) High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl Phys Lett 94(23):233110

    Article  Google Scholar 

  31. Qin C, Shi X, Bai SQ et al (2006) High temperature electrical and thermal properties of the bulk carbon nanotube prepared by SPS. Mater Sci Eng A 420(1):208–211

    Article  Google Scholar 

  32. Chartier T, Laurent JM, Smith DS et al (2001) Oxidation resistance and electrical properties of silicon carbide added with Al2O3, AlN, Y2O3 and NiO. J Mater Sci 36(15):3793–3800. doi:10.1023/A:1017990220468

    Article  Google Scholar 

  33. Lu MM, Cao WQ, Shi HL et al (2014) Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J Mater Chem A. doi:10.1039/C4TA01715C

    Google Scholar 

  34. Lu B, Dong XL, Huang H et al (2008) Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J Magn Magn Mater 320(6):1106–1111

    Article  Google Scholar 

  35. Ye F, Zhang LT, Yin XW et al (2014) Fabrication of Si3N4–SiBC composite ceramic and its excellent electromagnetic properties. J Eur Ceram Soc 32(16):4025–4029

    Article  Google Scholar 

  36. Mejdoubi A, Brosseau C (2007) Controllable effective complex permittivity of functionally graded composite materials: a numerical investigation. J Appl Phys 102(9):094105

    Article  Google Scholar 

  37. Lestriez B, Maazouz A, Gerard JF et al (1998) Is the Maxwell–Sillars–Wagner model reliable for describing the dielectric properties of a core–shell particle–epoxy system? Polymer 39(26):6733–6742

    Article  Google Scholar 

  38. Rogti F, Ferhat M (2014) Maxwell–Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers. J Electrostat 72(1):91–97

    Article  Google Scholar 

  39. Tsangaris GM, Psarras GC, Kouloumbi N (1998) Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci 33(8):2027–2037. doi:10.1023/A:1004398514901

    Article  Google Scholar 

  40. Kong LB, Li ZW, Liu L et al (2013) Recent progress in some composite materials and structures for specific electromagnetic applications. Int Mater Rev 58(4):203–259

    Article  Google Scholar 

  41. Afghahi SSS, Shokuhfar A (2014) Two step synthesis, electromagnetic and microwave absorbing properties of FeCO@C core–shell nanostructure. J Magn Magn Mater 370:37–44

    Article  Google Scholar 

  42. Wu H, Wang L, Guo S, Shen Z (2012) Double-layer structural design of dielectric ordered mesoporous carbon/paraffin composites for microwave absorption. Appl Phys A 108(2):439–446

    Article  Google Scholar 

  43. Tian H, Liu HT, Cheng HF (2014) A high-temperature radar absorbing structure: design, fabrication, and characterization. Compos Sci Technol 90:202–208

    Article  Google Scholar 

  44. Luo H, Shen J, Zhang C (2013) Synthesis and microwave absorbing mechanism of two-layer microwave absorbers containing Li0.35Zn0.3Fe2.35O4 micro-belts and nickel-coated carbon fibers. Compos B 50:62–66

    Article  Google Scholar 

  45. Shen G, Xu M, Xu Z (2007) Double-layer microwave absorber based on ferrite and short carbon fiber composites. Mater Chem Phys 105(2):268–272

    Article  Google Scholar 

  46. Zheng GP, Yin XW, Wang J, Guo M, Wang X (2012) Complex permittivity and microwave absorbing property of Si3N4–SiC composite ceramic. J Mater Sci Technol 28(8):745–750

    Article  Google Scholar 

  47. Zhang J (2011) Effects of CBS coating on dielectric properties of porous Si3N4 ceramic at high temperature and high frequency. J Mater Eng 1(2):42–45

    Google Scholar 

  48. Zhang B, Li J, Sun J et al (2002) Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range. J Eur Ceram Soc 22(1):93–99

    Article  Google Scholar 

  49. Fang Y, Li L, Xiao Q, Chen XM (2012) Preparation and microwave dielectric properties of cristobalite ceramics. Ceram Int 38(6):4511–4515

    Article  Google Scholar 

  50. Zheng GP, Yin XW, Liu SH et al (2013) Improved electromagnetic absorbing properties of Si3N4–SiC/SiO2 composite ceramics with multi-shell microstructure. J Eur Ceram Soc 33(11):2173–2180

    Article  Google Scholar 

  51. Kwon OS, Hong SH, Kim H (2003) The improvement in oxidation resistance of carbon by a graded SiC/SiO2 coating. J Eur Ceram Soc 23(16):3119–3124

    Article  Google Scholar 

  52. Ye F, Zhang LT, Yin XW et al (2014) Dielectric and microwave-absorption properties of SiC nanoparticle/SiBCN composite ceramics. J Eur Ceram Soc 34(2):205–215

    Article  Google Scholar 

  53. Michielssen E, Sajer JM, Ranjithan S, Mittra R (1993) Design of lightweight, broad-band microwave absorbers using genetic algorithms. IEEE Trans Microw Theory Tech 41(6):1024–1031

    Article  Google Scholar 

  54. Chen LY, Duan YP, Liu LD, Guo JB, Liu SH (2011) Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater Des 32:570–574

    Article  Google Scholar 

  55. Zhou W, Xiao P, Li Y (2012) Preparation and study on microwave absorbing materials of boron nitride coated pyrolytic carbon particles. Appl Surf Sci 258:8455–8459

    Article  Google Scholar 

  56. Bi S, Su X, Hou G et al (2013) Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram Int 39(5):5979–5983

    Article  Google Scholar 

  57. Micheli D, Apollo C, Pastore R, Marchetti M (2010) X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70(2):400–409

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant: 51332004 and 51221001), the Fundamental Research Funds for the Central Universities (No.3102014JC02010403), the Program for New Century Excellent Talents in University (NCET-08-0461), and the 111 Project (B08040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yin, X., Zheng, G. et al. High-temperature dielectric and microwave absorption properties of Si3N4–SiC/SiO2 composite ceramics. J Mater Sci 50, 1478–1487 (2015). https://doi.org/10.1007/s10853-014-8709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8709-y

Keywords

Navigation