Skip to main content
Log in

Electronic and magnetic properties of Fe(Mn)-doped Cd and Zn nitrides for spintronic applications: a first-principles study

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The investigations on the half-metallic ferromagnetic property for Fe(Mn)-doped CdN and ZnN have been reported in this work. We performed electronic band structure calculations using full-potential linear augmented-plane-wave method. Fe(Mn) were substituted into the host compounds in doping concentration of 37.5 % to replace Cd and Zn atoms in CdN and ZnN, respectively. After doping, the compounds are found to exhibit half-metallic ferromagnetism. Electronic band structure, density of states, and magnetic properties were studied in this work. The p–d hybridization between the doped transition metal-d bands and N-p bands that leads to exchange splitting has been discussed to bring out the differences in the half-metallic character of the doped compounds. The degree of half-metallic nature in terms of spin polarizations has been predicted. The calculated magnetic moments for the doped half-metallic ferromagnets are found to decrease with spin polarization. The doped half-metallic materials are found to exhibit direct band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Groot RA, Muller FM, Van Engen PG, Buschow KHJ (1983) New class of materials: half metallic ferromagnets. Phys Rev Lett 50:2024–2027

    Article  Google Scholar 

  2. De Groot RA, Muller FM, Van Engen PG, Buschow KHJ (1984) Half-metallic ferromagnets and their magneto-optical properties. J Appl Phys 55:2151–2154

    Article  Google Scholar 

  3. Houari A, Matar SF, Eyert V (2010) Semiconducting (half-metallic) ferromagnetism in Mn(Fe) substituted Pt and Pd nitrides. Phys. Rev. B 82:241201(R)

    Article  Google Scholar 

  4. Doumi B, Tadjer A, Dahmane F, Mesri D, Aourag H (2013) Investigations of structural, electronic, and half-metallic ferromagnetic properties in (Al, Ga, In)1−x M x N (M = Fe, Mn) diluted magnetic semiconductors. J. Supercond. Nov. Magn. 26:515–525

    Article  Google Scholar 

  5. Yoo S-H, Walsh A, Scanlon DO, Soon A (2011) Electronic structure and band alignment of Zn3N2. RSC Adv 4:3306–3311

    Article  Google Scholar 

  6. Futsuhara M, Yoshioka K, Takai O (1998) Structural, electrical and optical properties of zinc nitride thin films prepared by reactive RF magnetron sputtering. Thin Solid Films 322:274–281

    Article  Google Scholar 

  7. Zong F, Ma H, Xue C, Du W, Zhang X, Xiao H, Ma J, Ji F (2006) Structural properties of zinc nitride empty balls. Mater. Lett. 60:905–908

  8. Kuriyama K, Takahashi Y, sunohara F (1993) Optical band gap of Zn3N2 films. Phys. Rev. B 48:2781–2797

    Article  Google Scholar 

  9. Toyoura K, Tsujimura H, Goto T, Hachiya K, Hagiwara R, Ito Y (2005) Optical properties of zinc nitride formed by molten salt electrochemical process. Thin Solid Films 492:88–92

    Article  Google Scholar 

  10. Suda T, Kakishita K (2006) Band gap energy and electron effective mass of polycrystalline Zn3N2. J Appl Phys 99:76101–76103

    Article  Google Scholar 

  11. Xing GZ, Fang XS, Zhang Z, Wang DD, Huang X, Guo J, Liao L, Zheng Z, Xu HR, Yu T, Shen ZX, Huan CHA, Sum TC, Zhang H, Wu T (2010) Ultrathin single ZnO nanobelts: Ag-catalysed growth and field emission property. Nanotechnology 25:255701–255703

    Article  Google Scholar 

  12. Kresse G, Hafner J (1993) Ab-initio molecular dynamics for liquid metals. Phys. Rev. B 47:558–561

    Article  Google Scholar 

  13. Kresse G, Furthmuller J (1996) Effective iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys. Rev. B 54:11169–11172

    Article  Google Scholar 

  14. Gupta SD, Jha PK, Pandya A (2013) Structural and dynamical stability of cadmium nitride using first principles calculations. Solid State Sci 21:66–72

    Article  Google Scholar 

  15. Zhao E, Wang J, Meng J, Wu Z (2010) Structural, mechanical and electronic properties of 4d transition metal mono-nitrides by first principles. Comput Mater Sci 47:1064–1071

    Article  Google Scholar 

  16. Korir KK, Amolo GO, Makau NW, Joubert DP (2011) First principle calculations of 4d transition metal carbides and nitrides in rocksalt, zincblende and wurtzite structures. Diam. Relat. Mater. 20:157–164

    Article  Google Scholar 

  17. Ateser E, Ozisik H, Colakogulu K, Deligoz E (2011) The structural and mechanical properties of CdN compound-A first principles study. Comput Mater Sci 50:3208–3212

    Article  Google Scholar 

  18. Ghemid S, Oudnaji S, meradji H, DRabilia S, Labidi S (2009) FP-LAPW investigation of ternary alloys. CdS1−x Te x . Phys. Procedia 2:881–887

    Article  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys. Rev. 136:B864–B871

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Self consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–A1138

    Article  Google Scholar 

  21. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal Properties. Vienna University of Technology, Austria

    Google Scholar 

  22. Madsen GKH, Blaha P, Schwarz K, Sjostedt E, Nordstrom L (2001) Efficient linearization of augmented plane wave method. Phys. Rev. B 64:195134

    Article  Google Scholar 

  23. Schwarz K, Blaha P, Madsen GKH (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun 147:71–76

    Article  Google Scholar 

  24. Wu Z, Cohen R (2006) More accurate generalized gradient approximation for solids. Phys. Rev. B 73:235116

    Article  Google Scholar 

  25. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 22:5048

    Article  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  Google Scholar 

  28. Singh DJ (2006) Plane waves, pseudopotentials and the LAPW method, 2nd edn. Springer, New York

    Google Scholar 

  29. Monkhorst HJ, Pack JD (1976) Special points for brillouin zone integration. Phys. Rev. B 13:5188

    Article  Google Scholar 

  30. Momma K, Izumi F (2008) VESTA:a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 41:653–658

    Article  Google Scholar 

  31. Wen T, Gautam M et al (2013) Mater Sci Semicond Process 16:318

    Article  Google Scholar 

  32. Jiang N, Georgiev DG, Jayatissa AH, Collins RW, Chen J, McCullen E (2012) Zinc nitride films prepared by reactive RF magnetron sputtering of zinc in nitrogen containing atmosphere. J Phys D Appl Phys 45:135101

    Article  Google Scholar 

  33. Zong F, Ma H, Du W, Ma J, Zhang X, Xiao H, Ji F, Xue C (2006) Optical band gap of zinc nitride films prepared on quartz substrates from a zinc nitride target by reactive RF magnetron sputtering. Appl Surf Sci 252:7983–7986

    Article  Google Scholar 

  34. Kahal L, Zaoui A, Ferhat M (2009) Magnetic and half-metallic properties of MPo (M = Ti, V, Cr, Mn, Fe) compounds. J Appl Phys 105:63905

    Article  Google Scholar 

  35. Kanoun MB, Goumri-Said S, Merad AE, Cibert J (2005) First-principles investigation of electronic structure and magnetic properties in ferromagnetic Ga x Mn1−x N and Al1−x Mn x N. J Phys D Appl Phys 38:1853–1859

    Article  Google Scholar 

  36. Boukra A, Zaoui A, Ferhat M (2010) Magnetic trends in Ga x Mn1−x N, Al x Mn1−x N, and In x Mn1−x N ternary systems: a first-principles study. J Appl Phys 108:123904–123907

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge Prof. P. Blaha and Prof. K. Schwarz of Vienna, Austria for providing WIEN2k code for our work in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohamed Sheik Sirajuddeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirajuddeen, M.M.S., Banu, I.B.S. Electronic and magnetic properties of Fe(Mn)-doped Cd and Zn nitrides for spintronic applications: a first-principles study. J Mater Sci 50, 1446–1456 (2015). https://doi.org/10.1007/s10853-014-8705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8705-2

Keywords

Navigation