Skip to main content

Advertisement

Log in

Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, Al/diamond composites were fabricated by the gas pressure infiltration method. The infiltration temperature and pressure were varied to study their influence on the interfacial microstructures and thermal conductivities of composites. The results show that the infiltration temperature and pressure dramatically affect the reaction between the Al matrix and the diamond particles. The appropriate conditions activate the reaction on the {111} faces of diamond which possesses a higher chemical stability than the {100} faces. The course of the reaction can lead to the structural and chemical modification of the interface, which strongly affects the thermal conductivity of the final composites. Using our optimised parameters of 800 °C and 0.8 MPa, a superior thermal conductivity above 760 W m−1 K−1 was obtained. Controlling the fabrication parameters to optimise the reaction on the {100} and {111} faces can result in a superior Al/diamond material with greater thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qu XH, Zhang L, Wu M, Ren SB (2011) Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog Nat Sci 21:189–197

    Article  Google Scholar 

  2. Zweben C (2006) Thermal materials solve power electronics challenges. Power Electron Technol 32:40–47

    Google Scholar 

  3. Chu K, Jia CC, Guo H, Li WS (2013) On the thermal conductivity of Cu–Zr/diamond composites. Mater Des 45:36–42

    Article  Google Scholar 

  4. Chu K, Liu ZF, Jia CC, Chen H, Liang XB, Gao WJ, Tian WH, Guo H (2010) Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance. J Alloys Compd 490:453–458

    Article  Google Scholar 

  5. Tan ZQ, Li ZQ, Fan GL, Kai XZ, Ji G, Zhang LT, Zhang D (2013) Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Composites B 47:173–180

    Article  Google Scholar 

  6. Xue C, Yu JK (2013) Enhanced thermal conductivity in diamond/aluminum composites: comparison between the methods of adding Ti into Al matrix and coating Ti onto diamond surface. Surf Coat Technol 217:46–50

    Article  Google Scholar 

  7. Tan ZQ, Li ZQ, Fan GL, Guo Q, Kai XZ, Ji G, Zhang LT, Zhang D (2013) Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des 47:160–166

    Article  Google Scholar 

  8. Monje IE, Louis E, Molina JM (2013) Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control. Composites A 48:9–14

    Article  Google Scholar 

  9. Tan ZQ, Li ZQ, Fan GL, Kai XZ, Ji G, Zhang LT, Zhang D (2013) Diamond/aluminum composites processed by vacuum hot pressing: microstructure characteristics and thermal properties. Diamond Relat Mater 31:1–5

    Article  Google Scholar 

  10. Wu JH, Zhang HL, Zhang Y, Li JW, Wang XT (2012) Effect of copper content on the thermal conductivity and thermal expansion of Al–Cu/diamond composites. Mater Des 39:87–92

    Article  Google Scholar 

  11. Liang XB, Jia CC, Chu K, Chen H, Nie JH, Gao WJ (2012) Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering. J Compos Mater 46:1127–1136

    Article  Google Scholar 

  12. Mizuuchi K, Inoue K, Agari Y, Morisada Y, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y (2011) Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Composites B 42:825–831

    Article  Google Scholar 

  13. Mizuuchi K, Inoue K, Agari Y, Morisada Y, Sugioka M, Tanaka M, Takeuchi T, Kawahara M, Makino Y (2011) Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS. Composites B 42:1029–1034

    Article  Google Scholar 

  14. Cui Y, Xu SB, Zhang L, Guo S (2011) Microstructure and thermal properties of diamond/Al composite fabricated by pressureless metal infiltration. Adv Mater Res 150–151:1110–1118

    Google Scholar 

  15. Zhang Y, Wang XT, Jiang SB, Wu JH (2010) Thermo-physical properties of Ti-coated diamond/Al composites prepared by pressure infiltration. Mater Sci Forum 654–656:2572–2575

    Article  Google Scholar 

  16. Feng H, Yu JK, Tan W (2010) Microstructure and thermal properties of diamond/aluminum composites with TiC coating on diamond particles. Mater Chem Phys 124:851–855

    Article  Google Scholar 

  17. Chu K, Jia CC, Liang XB, Chen H (2010) Effect of sintering temperature on the microstructure and thermal conductivity of Al/diamond composites prepared by spark plasma sintering. Int J Miner Metall Mater 17:234–240

    Article  Google Scholar 

  18. Zhang Y, Wang XT, Wu JH (2009) The influence of silicon content on the thermal conductivity of Al–Si/diamond composites. In: International Conference on Electronic Packaging Technology and High Density Packaging, Beijing, pp 708–712

  19. Weber L, Tavangar R (2009) Diamond-based metal matrix composites for thermal management made by liquid metal infiltration—potential and limits. Adv Mater Res 59:111–115

    Article  Google Scholar 

  20. Chen N, Pan XF, Gu MY (2009) Microstructure and physical properties of Al/diamond composite fabricated by pressureless infiltration. Mater Sci Technol 25:400–402

    Article  Google Scholar 

  21. Ruch PW, Beffort O, Kleiner S, Weber L, Uggowitzer PJ (2006) Selective interfacial bonding in Al(Si)–diamond composites and its effect on thermal conductivity. Compos Sci Technol 66:2677–2685

    Article  Google Scholar 

  22. Beffort O, Khalid FA, Weber L, Ruch P, Klotz UE, Meier S, Kleiner S (2006) Interface formation in infiltrated Al(Si)/diamond composites. Diamond Relat Mater 15:1250–1260

    Article  Google Scholar 

  23. Johnson WB, Sonuparlak B (1993) Diamond/Al metal matrix composites formed by the pressureless metal infiltration process. J Mater Res 8:1169–1173

    Article  Google Scholar 

  24. Long JP, Li X, Fang DD, Peng P, He Q (2013) Fabrication of diamond particles reinforced Al-matrix composites by hot-press sintering. Int J Refract Met Hard Mater 41:85–89

    Article  Google Scholar 

  25. Chu K, Jia CC, Liang XB, Chen H, Gao WJ, Guo H (2009) Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance. Mater Des 30:4311–4316

    Article  Google Scholar 

  26. ISO 22007–4 (2008) Determination of thermal conductivity and thermal diffusivity—Part 4: Laser flash method, 2nd edn. International Standard, Switzerland

    Google Scholar 

  27. Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles. Scripta Mater 65:1097–1100

    Article  Google Scholar 

  28. Zhang Y (2013) Research on high thermal-conductive metal matrix composites (MMCs) reinforced with diamond particles. Dissertation for the doctoral degree in engineering, University of Science and Technology Beijing, China

  29. Swartz ET, Pohl RO (1989) Thermal boundary resistance. Rev Mod Phys 61:605–668

    Article  Google Scholar 

  30. Monje IE, Louis E, Molina JM (2012) Aluminum/diamond composites: a preparative method to characterize reactivity and selectivity at the interface. Scripta Mater 66:789–792

    Article  Google Scholar 

  31. Kleiner S, Khalid FA, Ruch PW, Meier S, Beffort O (2006) Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium. Scripta Mater 55:291–294

    Article  Google Scholar 

  32. Tavangar R, Molina JM, Weber L (2007) Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scripta Mater 56:357–360

    Article  Google Scholar 

  33. Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N (1997) The measurement of thermal properties of diamond. Diamond Relat Mater 6:1057–1061

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51301018, 51204155) and International Science and Technology Cooperation Program of China (2014DFA51610). Dr. Y. Zhang also gratefully thanks the support from the Research Project of State Key Laboratory for Advanced Metals and Materials (2014Z-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Zhang or Xitao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, J., Zhao, L. et al. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci 50, 688–696 (2015). https://doi.org/10.1007/s10853-014-8628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8628-y

Keywords

Navigation