Skip to main content
Log in

A procedure for indirect and automatic measurement of prior austenite grain size in bainite/martensite microstructures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An alternative procedure for indirect and automatic measurement of the prior austenite grain size (PAGS) in bainite/martensite is proposed in this work. It consists in the determination of an effective grain size by means of statistical post-processing of electron backscatter diffraction (EBSD) data. The algorithm developed for that purpose, which is available on-line, has been applied to simulated EBSD maps as well as to both nanocrystalline bainitic steel and commercial hot-rolled air-cooled steel with a granular bainitic microstructure. The new proposed method has been proven to be robust, and results are in good agreement with conventional PAGS measurements. The added value of the procedure comes from its simplicity, as no parent reconstruction is involved during the process, and its suitability for low-magnification EBSD maps, thus allowing a large step size and coverage of a substantially broader area of the sample than the previous methods reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

DDS:

Distance-disorientation function

EBSD:

Electron backscatter diffraction

EGS:

Effective grain size

KS-OR:

Kurdjumov–Sachs orientation relationship

OR:

Orientation relationship

PAG:

Prior austenite grain

PAGB:

Prior austenite grain boundary

PAGS:

Prior austenite grain size

RSS:

Residual sum of squares

References

  1. Gladman T (1997) The physical metallurgy of microalloyed steels. Institute of Materials, London

    Google Scholar 

  2. Matsuzaki A, Bhadeshia HKDH (1999) Effect of austenite grain size and bainite morphology on overall kinetics of bainite transformation in steels. Mater Sci Technol 15:518–522

    Article  Google Scholar 

  3. Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2003) Acceleration of low-temperature bainite. ISIJ Int 43:1821–1825

    Article  Google Scholar 

  4. Garcia-Mateo C, Sourmail T, Caballero FG et al (2014) Nanostructured steel industrialisation: plausible reality. Mater Sci Technol 30:1071–1078

    Article  Google Scholar 

  5. Vander Voort GF (1984) Metallography: principles and practice. McGraw-Hill Book, New York

    Google Scholar 

  6. García De Andrés C, Bartolomé MJ, Capdevila C, San Martín D, Caballero FG, López V (2001) Metallographic techniques for the determination of the austenite grain size in medium-carbon microalloyed steels. Mater Charact 46:389–398

    Article  Google Scholar 

  7. Lozinskii MG (1961) High temperature metallography. Pergamon, Oxford, p 241

    Book  Google Scholar 

  8. Okamoto M, Miyagawa O, Saga T (1966) High temperature microscope observation of the austenite grain size of steels. Trans Jpn Inst Met 7:217–223

    Article  Google Scholar 

  9. Modin H, Modin S (1973) Metallurgical microscopy. Butterworths, London, pp 181–183

    Book  Google Scholar 

  10. Gourgues–Lorenzon AF (2007) Application of electron backscatter diffraction to the study of phase transformations. Int Mater Rev 52(2):65–128

    Article  Google Scholar 

  11. Patala S, Mason JK, Schuh CA (2012) Improved representations of misorientation information for grain boundary science and engineering. Prog Mater Sci 57(8):1383–1425

    Article  Google Scholar 

  12. Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX: free and open source software soolbox. Solid State Phenom 160:63–68

    Article  Google Scholar 

  13. Kurdjumow G, Sachs G (1930) Über der Mechanismus der Stahlhärtung (On the mechanism of hardening of steel). Z Physik 64:325–343

    Article  Google Scholar 

  14. Furuhara T, Kawata H, Morito S, Maki T (2006) Crystallography of upper bainite in Fe–Ni–C alloys. Mater Sci Eng A 431:228–236

    Article  Google Scholar 

  15. Nishiyama Z (1934) X-ray investigation of the mechanism of the transformation from face-centred cubic lattice to body-centred cubic. Sci Rep Tohoku Imperial Univ 23:637–664

    Google Scholar 

  16. Wassermann G (1935) Über den Mechanismus der α → γ Umwandlung des Eisens (On the mechanism of the α → γ transformation of iron). Mitteilungen aus dem Kaiser Wilhelm Institut für Eisenforschung 17:149–155

    Google Scholar 

  17. Germain L, Gey N, Mercier R, Blaineau P, Humbert M (2012) An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: Application to steels. Acta Mater 60:4551–4562

    Article  Google Scholar 

  18. Yardley VA, Payton EJ (2014) Austenite–martensite/bainite orientation relationship: characterisation parameters and their application. Mater Sci Technol 30:1125–1130

    Article  Google Scholar 

  19. HKL CHANNEL 5 software, version 5.0.9.0, 1998-2006 HKL Technology A/S (Oxford Instruments plc, Tubney Woods, Abingdon, Oxon OX13 5QX, UK)

  20. Cayron C, Artaud B, Briottet L (2006) Reconstruction of parent grains from EBSD data. Mater Charact 57:386–401

    Article  Google Scholar 

  21. Tari V, Rollett AD, Beladi H (2013) Back calculation of parent austenite orientation using a clustering approach. J Appl Crystallogr 46:210–215

    Article  Google Scholar 

  22. Abbasi M, Nelson TW, Sorensen CD, Wei L (2012) An approach to prior austenite reconstruction. Mater Charact 66:1–8

    Article  Google Scholar 

  23. Miyamoto G, Iwata N, Takayama N, Furuhara T (2010) Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Mater 58:6393–6403

    Article  Google Scholar 

  24. Bernier N, Bracke L, Malet L, Godet S (2014) An alternative to the crystallographic reconstruction of austenite in steels. Mater Charact 89:23–32

    Article  Google Scholar 

  25. Payton EJ, Aghajani A, Otto F, Eggeler G, Yardley VA (2012) On the nature of internal interfaces in a tempered martensite ferritic steel and their evolution during long-term creep. Scr Mater 66:1045–1048. doi:10.1016/j.scriptamat.2012.02.042

    Article  Google Scholar 

  26. Jafarian HR, Borhani E, Shibata A, Terada D, Tsuji N (2011) Martensite/austenite interfaces in ultrafine grained Fe-Ni-C alloy. J Mater Sci 46:4216–4220. doi:10.1007/s10853-010-5018-y

    Article  Google Scholar 

  27. Brahme A, Staraselski Y, Inal K, Mishra RK (2012) Determination of the minimum scan size to obtain representative textures by electron backscatter diffraction. Metall Mater Trans A 43:5298–5307

    Article  Google Scholar 

  28. Beausir B, Fressengeas C, Gurao NP, Toth LS, Suwas S (2009) Spatial correlation in grain misorientation distribution. Acta Mater 57(18):5382–5395

    Article  Google Scholar 

  29. Mackenzie JK (1958) 2nd paper on statistics associated with the random misorientation of cubes. Biometrika 45:229–240

    Article  Google Scholar 

  30. Handscomb DC (1958) On the random misorientation of two cubes. Canad J Math 10:85–88

    Article  Google Scholar 

  31. Caballero FG, Roelofs H, Hasler S et al (2012) Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater Sci Technol 28:95–102

    Article  Google Scholar 

  32. MATLAB (MathWorks, Inc., Natick, MA, USA)

  33. Morales-Rivas L (2013) EBSD Distance-Disorientation Distribution 3D plot, MATLAB Central File Exchange. Retrieved July 15, 2014 http://www.mathworks.com/matlabcentral/fileexchange/40789-ebsd-distance-disorientation-distribution-3d-plot

  34. Bramfitt S (1990) A perspective on the Morphology of Bainite. Metall Trans A 21:817–829

    Article  Google Scholar 

  35. Krauss G, Thompson SW (1995) Ferritic microstructures in continuously cooled low-carbon and ultralow-carbon steels. ISIJ Int 35:937–945

    Article  Google Scholar 

  36. Zajac S, Komenda J, Morris P, Dierickx P, Matera S and Penalba Diaz S (2005) Quantitative structure–property relationship for complex bainitic microstructures. Technical Steel Research, European Commission, contract No 7210-PR/247, Final report. ISBN: 92-894-9206-6. http://bookshop.europa.eu/en/quantitative-structure-property-relationships-for-complex-bainitic-microstructures-pbKINA21245/. Accessed 8 Sept 2014

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Spanish Ministry of Economy and Competitiveness for funding this research under the contract IPT-2012-0320-420000. L.M.-R. also acknowledges the Spanish Ministry of Economy and Competitiveness for financial support in the form of a PhD research Grant (FPI-Ref. BES-2011-044186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Garcia-Mateo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Rivas, L., Yardley, V.A., Capdevila, C. et al. A procedure for indirect and automatic measurement of prior austenite grain size in bainite/martensite microstructures. J Mater Sci 50, 258–267 (2015). https://doi.org/10.1007/s10853-014-8584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8584-6

Keywords

Navigation