Skip to main content

Advertisement

Log in

CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Six types of PILs were designed and synthesized by radical polymerization reaction and ion exchange reaction and the 1H NMR analysis and TG-MS analysis proved the successful procedure and their CO2 permeation properties were evaluated. 1-butyl 3-methylimidazole double trifluoromethane sulfonate ([bmim][Tf2N])-based facilitated transport membrane, with 10 wt% poly([ViEtIm] Tf2N), showed an excellent CO2 permeability of 920 Barrer, similar to that of the others investigated. PILs were distributed in the SILM using the “like dissolves like” theory to investigate the gas permeation separation performance before and after doping of the PILs in SILM. Owing to the reversible interaction between the CO2 molecules and electropositive PIL chains, this supported ionic liquid membrane selectively transfer CO2 more rapidly. The polymer chains play the role of mobile CO2 carrier in the SLM, and introduce facilitated transport mechanism. This concept may provide a means for fabricating a highly permeable and selective membrane to break through Robeson’s upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li P, Pramoda KP, Chung TS (2011) CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)room temperature ionic liquid composite membranes. Ind Eng Chem Res 50:9344–9353

    Article  Google Scholar 

  2. Standing TH (2001) Climate change projections hinge on global CO2, temperature data. Oil Gas J 99:20–21

    Google Scholar 

  3. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    Article  Google Scholar 

  4. Yeo ZY, Chew TL, Zhu PW et al (2012) Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. J Nat Gas Chem 3:282–298

    Article  Google Scholar 

  5. Xiao YC, Low BT, Hosseini SS et al (2009) The strategy of molecular designand modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34:561–580

    Article  Google Scholar 

  6. Drioli E, Brunetti A, Di Profio G et al (2012) Process intensification strategies and membrane engineering. Green Chem 14:1561–1572

    Article  Google Scholar 

  7. Shao L, Low BT, Chung TS et al (2009) Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 327:18–31

    Article  Google Scholar 

  8. Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control 4:739–755

    Article  Google Scholar 

  9. Plasynski SI, Chen Z (2000) Review of CO2 capture technologies and some improvement opportunities. ACS Div Fuel Chem Prepr 45:644–649

    Google Scholar 

  10. Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65

    Article  Google Scholar 

  11. Fortunato R, Afonso CAM, Reis MAM, Crespo JG (2004) Supported liquid membranes using ionic liquid: study of stability and transport mechanisms. J Membr Sci 242:197–209

    Article  Google Scholar 

  12. Iiconich J, Myers C, Pennline H, Luebke D (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125°C. J Membr Sci 298:41–47

    Article  Google Scholar 

  13. Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res 46:1369–1374

    Article  Google Scholar 

  14. Yokozeki A, Shiflett MB (2007) Hydrogen purification using room-temperature ionic liquids. Appl Energy 84:351–361

    Article  Google Scholar 

  15. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble RD (2004) Gas separation using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238:57–63

    Article  Google Scholar 

  16. Scovazzo P, Havard D, McShea M, Mixon S, Morgan D (2009) Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J Membr Sci 327:41–48

    Article  Google Scholar 

  17. Bara JE, Gabrel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separation in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem Eng J 47:43–50

    Article  Google Scholar 

  18. Hu X, Tang J, Blasig A, Shen Y, Radosz M (2006) CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 281:130–138

    Article  Google Scholar 

  19. Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46:5397–5404

    Article  Google Scholar 

  20. Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, Gin DL (2008) Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 321:3–7

    Article  Google Scholar 

  21. Min GH, Yim T, Lee HY (2006) Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc 27:847–852

    Article  Google Scholar 

  22. Placido GM, Letizia L, Sandra LS et al (2012) Fast and reversible CO2 quartz crystal microbalance response of vinylimidazolium based poly(ionic liquid)s. Polym Adv Technol 23:1511–1519

    Article  Google Scholar 

  23. Iz´ak P, Ruth W, Fei Z et al (2008) Selective removal of acetone and butan-1-ol from water with supported ionic liquid–polydimethylsiloxane membrane by pervaporation. Chem Eng J 139:318–321

    Article  Google Scholar 

  24. Yuan S, Deng Q, Fang G et al (2012) A novel ionic liquid polymer material with high binding capacity for proteins. J Mater Chem 22:3965–3972

    Article  Google Scholar 

  25. Bara JE, Hatakeyama ES, Gin DL, Noble RD (2008) Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym Adv Technol 19:1415–1420

    Article  Google Scholar 

  26. Bara JE, Noble RD, Gin DL (2009) Effect of “Free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind Eng Chem Res 48:4607–4610

    Article  Google Scholar 

  27. Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159

    Article  Google Scholar 

  28. Lee JH, Hong J, Kim JH, Kang YS, Kang SW (2012) Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Chem Commun 48:5298–5300

    Article  Google Scholar 

  29. Hudiono YC, Carlisle TK, LaFrate AL, Gin DL, Noble RD (2011) Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J Membr Sci 370:141–148

    Article  Google Scholar 

  30. Sun X, Zhang M, Luo J, Li J (2014) Constructing CO2-facilitated transport highway in supported ionic liquid membranes. Funct Mater Lett 7:1450012

    Article  Google Scholar 

  31. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 3325–3327

  32. Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039

    Article  Google Scholar 

  33. Blasig A, Tang J, Hu X, Tan S, Shen Y, Radosz M (2007) Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance: P[VBTMA][BF4] and P[VBMI][BF4]. Ind Eng Chem Res 46:5542–5547

    Article  Google Scholar 

  34. Blasig A, Tang J, Hu X (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinyl-benzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryl oyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80

    Article  Google Scholar 

  35. Marcilia R, Blazquez JA, Rodriguez J (2004) Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J Polym Sci Pol Chem 42:208–212

    Article  Google Scholar 

  36. Jiang YY, Zhou Z, Jiao Z, Li L, Wu YT, Zhang ZB (2007) SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 111:5058–5061

    Article  Google Scholar 

  37. Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Amino acid ionic liquid-based facilitated transport membranes for CO2 separation. Chem Commun 48:6903

    Article  Google Scholar 

  38. Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J Membr Sci 415–416:168–175

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (no. 21136007) and the authors express their gratitude to Prof. Wu you-ting of the Nanjing University in Jiangsu Province for his kind assistance with the setting up of the permeability tester and the beneficial academic communication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, M., Guo, R. et al. CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes. J Mater Sci 50, 104–111 (2015). https://doi.org/10.1007/s10853-014-8570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8570-z

Keywords

Navigation