Skip to main content
Log in

Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This report describes the direct melt processing of inorganic tin fluorophosphate (TFP) glass fibers with average diameters ranging from 2 to 4 µm via centrifugal Forcespinning. This was accomplished by using a TFP glass with low glass transition temperature (T g) and the melt processing capability of Forcespinning. The thermal behavior of TFP glass fibers was investigated by differential scanning calorimetry and thermogravimetric analysis, while the compositional evolution of the fibers was studied using energy-dispersive spectrometry and Fourier-transform infrared spectroscopy. These fibers exhibited excellent thermal stability after thermal post-treatment at 300 °C. The T g of the thermally treated fibers increased by 100 °C compared to the bulk material. The fibers were found to undergo dehydration and loss of fluorine during thermal treatment, resulting in a rigid and crosslinked glass network with enhanced thermal stability and increased T g. The enhanced thermal stability demonstrated the potential of TFP fibers for high temperature catalysis and chemical filtration applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fletcher LB, Witcher JJ, Troy N, Brow RK, Krol DM (2012) Single-pass waveguide amplifiers in Er–Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses. Opt Lett 37:1148–1150

    Article  Google Scholar 

  2. Fletcher LB, Witcher JJ, Troy N, Reis ST, Brow RK, Krol DM (2011) Direct femtosecond laser waveguide writing inside zinc phosphate glass. Opt Express 19:7929–7936

    Article  Google Scholar 

  3. Day D, Wu Z, Ray C, Hrma P (1998) Chemically durable iron phosphate glass wasteforms. J Non-Cryst Solids 241:1–12

    Article  Google Scholar 

  4. Yu X, Day DE, Long GJ, Brow RK (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215:21–31

    Article  Google Scholar 

  5. Reis S, Karabulut M, Day D (2001) Chemical durability and structure of zinc–iron phosphate glasses. J Non-Cryst Solids 292:150–157

    Article  Google Scholar 

  6. He Y, Day D (1992) Development of a low temperature phosphate sealing glass. Glass Technol 33:214–219

    Google Scholar 

  7. Minamf T, Mackenzie JD (1977) Thermal expansion and chemical durability of phosphate glasses. J Am Ceram Soc 60:232–235

    Article  Google Scholar 

  8. Wei T, Hu Y, Hwa L (2001) Structure and elastic properties of low-temperature sealing phosphate glasses. J Non-Cryst Solids 288:140–147

    Article  Google Scholar 

  9. Gupta M, Lin Y, Deans T, Baer E, Hiltner A, Schiraldi DA (2010) Structure and gas barrier properties of poly (propylene-graft-maleic anhydride)/phosphate glass composites prepared by microlayer coextrusion. Macromoles 43:4230–4239

    Article  Google Scholar 

  10. Gupta M, Lin Y, Deans T, Crosby A, Baer E, Hiltner A, Schiraldi DA (2009) Biaxially oriented poly (propylene-g-maleic anhydride)/phosphate glass composite films for high gas barrier applications. Polymer 50:598–604

    Article  Google Scholar 

  11. Cha J, Asida Y, Takebe H (2011) Analysis of viscoelastic flow in tin phosphate glass. In: IOP conf series: Mat Sci and Eng. doi:10.1088/1757-899X/18/11/112014

  12. Chang K, Lee T, Hwa L (2003) Structure and elastic properties of iron phosphate glasses. Chin J Phys 41:414–421

    Google Scholar 

  13. Hudgens JJ, Martin SW (1993) Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. J Am Ceram Soc 76:1691–1696

    Article  Google Scholar 

  14. Ray NH (1979) The structure and properties of inorganic polymeric phosphates. Br Polym J 11:163–177

    Article  Google Scholar 

  15. Otaigbe JU, Beall GH (1997) Inorganic phosphate glasses as polymers. Trends Polym Sci 5:369–379

    Google Scholar 

  16. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263:1–28

    Article  Google Scholar 

  17. Ahmed I, Lewis M, Olsen I, Knowles J (2004) Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials 25:501–507

    Article  Google Scholar 

  18. Abou Neel E, Ahmed I, Pratten J, Nazhat S, Knowles J (2005) Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26:2247–2254

    Article  Google Scholar 

  19. Nazhat SN, Abou Neel EA, Kidane A, Ahmed I, Hope C, Kershaw M et al (2007) Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8:543–551

    Article  Google Scholar 

  20. Ahmed I, Jones I, Parsons A, Bernard J, Farmer J, Scotchford C et al (2011) Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J Mater Sci Mater Med 22:1825–1834

    Article  Google Scholar 

  21. Cai M, Painter O, Vahala K, Sercel P (2000) Fiber-coupled microsphere laser. Opt Lett 25:1430–1432

    Article  Google Scholar 

  22. Li L, Schülzgen A, Temyanko V, Qiu T, Morrell M, Wang Q et al (2005) Short-length microstructured phosphate glass fiber lasers with large mode areas. Opt Lett 30:1141–1143

    Article  Google Scholar 

  23. Tick PA (1984) Water durable glasses with ultra low melting temperatures. Phys Chem Glasses 25:149–154

    Google Scholar 

  24. Tanner T, Oelgoetz J, Golovchak R, Brennan C, Kovalskyy A (2013) Structure of tin-fluorophosphate glasses for solar energy applications. In: Bulletin of the American Physical Society, vol 58

  25. Xu X, Day D (1990) Properties and structure of Sn-POF glasses. Phys Chem Glasses 31:183–187

    Google Scholar 

  26. Urman K, Otaigbe JU (2007) New phosphate glass/polymer hybrids—current status and future prospects. Prog Polym Sci 32:1462–1498

    Article  Google Scholar 

  27. Shaw CM, Shelby JE (1988) Preparation and properties of stannous fluorophosphate glasses. Phys Chem Glasses 29:49–53

    Google Scholar 

  28. Shaw C, Shelby JE (1988) The effect of stannous oxide on the properties of stannous fluorophosphate glasses. Phys Chem Glasses 29:87–90

    Google Scholar 

  29. Tischendorf BC, Harris DJ, Otaigbe JU, Alam TM (2002) Investigation of structure and morphology dynamics in tin fluorophosphate glass-polyethylene hybrids using solid-state 1H, 13C, and 31P MAS NMR. Chem Mater 14:341–347

    Article  Google Scholar 

  30. Shanmuganathan K, Fang Y, Chou DY, Sparks S, Hibbert J, Ellison CJ (2012) Solventless high throughput manufacturing of poly (butylene terephthalate) nanofibers. ACS Macro Lett 1:960–964

    Article  Google Scholar 

  31. Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K (2010) Electrospinning to Forcespinning™. Mater Today 13:12–14

    Article  Google Scholar 

  32. McEachin Z, Lozano K (2012) Production and characterization of polycaprolactone nanofibers via Forcespinning™ technology. J Appl Polym Sci 126:473–479

    Article  Google Scholar 

  33. Raghavan B, Soto H, Lozano K (2013) Fabrication of melt spun polypropylene nanofibers by Forcespinning. J Eng Fabr Fibre 8(1):52

    Google Scholar 

  34. Bell NS, Missert NA, Garcia RM, Nagasubramanian G, Leung K, Rempe SL et al. (2012) Surface engineering of electrospun fibers to optimize ion and electron transport in Li+ battery cathodes. Sandia report: SAND2012-8429

  35. Lozano K, Altecor A, Mao Y (2012) Large-scale synthesis of tin-doped indium oxide nanofibers using water as solvent. Funct Mater Lett 05:1250020

    Article  Google Scholar 

  36. Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48:3306–3316

    Article  Google Scholar 

  37. Nogami M, Nagao R, Wong C (1998) Proton conduction in porous silica glasses with high water content. J Phys Chem B 102:5772–5775

    Article  Google Scholar 

  38. Ebendorff-Heidepriem H, Seeber W, Ehrt D (1993) Dehydration of phosphate glasses. J Non-Cryst Solids 163:74–80

    Article  Google Scholar 

  39. Ehrt D (2008) Effect of OH-content on thermal and chemical properties of SnOP2O5 glasses. J Non-Cryst Solids 354:546–552

    Article  Google Scholar 

  40. Nogami M, Nagao R, Wong C, Kasuga T, Hayakawa T (1999) High proton conductivity in porous P2O5–SiO2 glasses. J Phys Chem B 103:468–9472

    Article  Google Scholar 

  41. Montagne L, Daviero S, Palavit G, Shaim A, Et-Tabirou M (2003) Glass network evolution with Bi3+/Ti4+ substitution in phosphate glasses formulated with a constant oxygen/phosphorus ratio. EXAFS, XANES, and 31P double quantum MAS NMR. Chem Mater 15:4709–4716

    Article  Google Scholar 

  42. Kirkpatrick RJ, Brow RK (1995) Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review. Solid State Nucl Magn Reson 5:9–21

    Article  Google Scholar 

  43. Brow RK, Kirkpatrick RJ, Turner GL (1993) Nature of alumina in phosphate glass: II, structure of sodium alurninophosphate glass. J Am Ceram Soc 76:919–928

    Article  Google Scholar 

  44. Bunker B, Arnold G, Wilder JA (1984) Phosphate glass dissolution in aqueous solutions. J Non-Cryst Solids 64:291–316

    Article  Google Scholar 

  45. Morinaga K, Fujino S (2001) Preparation and properties of SnO–SnCl2–P2O5 glass. J Non-Cryst Solids 282:118–124

    Article  Google Scholar 

  46. Moustafa Y, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240:144–153

    Article  Google Scholar 

  47. Shyu J-J, Yeh C-H (2007) Formation and properties of SnO–MgO–P2O5 glasses. J Mater Sci 42:4772–4777. doi:10.1007/s10853-006-0766-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Kadhir Shanmuganathan for his helpful suggestions and discussions. The authors would also like to thank the Welch Foundation (to CJE Grant #F-1709), DuPont Young Professor Award, 3M Non-tenured Faculty Grant and the National Science Foundation Center for Layered Polymeric Systems (Grant DMR-0423914) for their partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ellison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Herbert, M., Schiraldi, D.A. et al. Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning. J Mater Sci 49, 8252–8260 (2014). https://doi.org/10.1007/s10853-014-8534-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8534-3

Keywords

Navigation