Skip to main content
Log in

Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Free-standing TiO2 nanotube (NT) arrays have been prepared by a two-step anodization method. These translucent TiO2 NT arrays can be transferred to the fluorine-doped tin oxide glass substrates to form front-side illuminated TiO2 NT electrodes. The TiO2 NT electrodes were double-sensitized by CdSe/CdS quantum dots (QDs) through successive ionic layer adsorption and reaction (SILAR) process. The absorption range of the TiO2 NT electrode was extended from ~380 to 700 nm after sensitization with CdSe/CdS QDs. The SILAR cycles were investigated to find out the best combination of CdS and CdSe QDs for photovoltaic performance. The power conversion efficiency of 2.42 % was achieved by the CdSe(10)/CdS(8)/TiO2 NT solar cell. A further improved efficiency of 2.57 % was obtained with two cycles of ZnS overlayer on the CdSe(10)/CdS(8)/TiO2 NT electrode, which is 45.19 % higher than that of back-side illuminated solar cell. Furthermore, the ZnS(2)/CdSe(10)/CdS(8)/TiO2 NT solar cell possesses a higher stability than CdSe(10)/CdS(8)/TiO2 NT solar cell during the same period. The better photovoltaic performance of the ZnS(2)/CdSe(10)/CdS(8)/TiO2 NT solar cell has demonstrated the promising value to design quantum dots-sensitized solar cells with double-sensitized front-side illuminated TiO2 NT arrays strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4:908–918. doi:10.1021/jz400052e

    Article  Google Scholar 

  2. Ruhle S, Shalom M, Zaban A (2010) Quantum-dot-sensitized solar cells. Chem Phys Chem 11:2290–2304. doi:10.1002/cphc.201000069

    Article  Google Scholar 

  3. Kamat PV (2012) TiO2 nanostructures recent physical chemistry advances. J Phys Chem C 116:11849–11851. doi:10.1021/jp305026h

    Article  Google Scholar 

  4. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl 50:2904–2939. doi:10.1002/anie.201001374

    Article  Google Scholar 

  5. Sharmoukh W, Allam NK (2012) TiO2 nanotube-based dye-sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor. ACS Appl Mater Interfaces 4:4413–4418. doi:10.1021/am301089t

    Article  Google Scholar 

  6. Smith YR, Sarma B, Mohanty SK, Misra M (2012) Light-assisted anodized TiO2 nanotube arrays. ACS Appl Mater Interfaces 4:5883–5890. doi:10.1021/am301527g

    Article  Google Scholar 

  7. Gao S, Yang J, Liu M, Yan H, Li W, Zhang J, Luo Y (2014) Enhanced photovoltaic performance of CdS quantum dots sensitized highly oriented two-end-opened TiO2 nanotubes array membrane. J Power Sources 250:174–180. doi:10.1016/j.jpowsour.2013.11.015

    Article  Google Scholar 

  8. Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7:1286–1289. doi:10.1021/nl070264k

    Article  Google Scholar 

  9. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR, Park S, Hong KS, Frank AJ (2011) General strategy for fabricating transparent TiO2 nanotube arrays for dye-Sensitized photoelectrodes illumination geometry and transport properties. ACS Nano 5:2647–2657. doi:10.1021/nn200440u

    Article  Google Scholar 

  10. Chen Q, Xu D, Wu Z, Liu Z (2008) Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology 19:365708. doi:10.1088/0957-4484/19/36/365708

    Article  Google Scholar 

  11. Wang J, Lin Z (2008) Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization. Chem Mater 20:1257–1261. doi:10.1021/cm7028917

    Article  Google Scholar 

  12. Guan XF, Huang SQ, Zhang QX, Shen X, Sun HC, Li DM, Luo YH, Yu RC, Meng QB (2011) Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays. Nanotechnology 22:465402. doi:10.1088/0957-4484/22/46/465402

    Article  Google Scholar 

  13. Ma X, Shen Y, Wu Q, Shen T, Cao M, Gu F, Wang L (2013) Free-standing TiO2 nanotube arrays for front-side illuminated CdS quantum dots sensitized solar cells. J Inorg Organomet Polym 23:798–802. doi:10.1007/s10904-013-9846-5

    Article  Google Scholar 

  14. Song JG, Song X, Ling T, Du XW, Qiao SZ (2012) Enhancing the conversion efficiency of semiconductor sensitized solar cells via the co-sensitization of dual-sized quantum dots. Ind Eng Chem Res 51:10074–10078. doi:10.1021/ie300109u

    Article  Google Scholar 

  15. González-Pedro V, Xu X, Mora-Seró I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790. doi:10.1021/nn101534y

    Article  Google Scholar 

  16. Barea EM, Shalom M, Giménez S, Hod I, Mora-Seró I, Zaban A, Bisquert J (2010) Design of injection and recombination in quantum dot sensitized solar cells. J Am Chem Soc 132:6834–6839. doi:10.1021/ja101752d

    Article  Google Scholar 

  17. Emin S, Singh SP, Han L, Satoh N, Islam A (2011) Colloidal quantum dot solar cells. Sol Energy 85:1264–1282. doi:10.1016/j.solener.2011.02.005

    Article  Google Scholar 

  18. Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125. doi:10.1021/ja0777741

    Article  Google Scholar 

  19. Li J, Zhao L, Wang S, Hu J, Dong B, Lu H, Wan L, Wang P (2013) Great improvement of photoelectric property from co-sensitization of TiO2 electrodes with CdS quantum dots and dye N719 in dye-sensitized solar cells. Mater Res Bull 48:2566–2570. doi:10.1016/j.materresbull.2013.03.009

    Article  Google Scholar 

  20. Li Y, Wei L, Chen X, Zhang R, Sui X, Chen Y, Jiao J, Mei L (2013) Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res Lett 8:67–73. doi:10.1186/1556-276X-8-67

    Article  Google Scholar 

  21. Gao XF, Li HB, Sun WT, Chen Q, Tang FQ, Peng LM (2009) CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J Phys Chem C 113:7531–7535. doi:10.1021/jp810727n

    Article  Google Scholar 

  22. Semonin OE, Luther JM, Choi S, Chen HY, Nozik AJ, Beard MC (2011) Peak external photocurrent quantum efficiency exceeding 100 % via MEG in a quantum dot solar cell. Science 334:1530–1533. doi:10.1126/science.1209845

    Article  Google Scholar 

  23. Lee HJ, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009) Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227. doi:10.1021/nl902438d

    Article  Google Scholar 

  24. Yu P, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ (2006) Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. J Phys Chem B 110:25451–25454. doi:10.1021/jp064817b

    Article  Google Scholar 

  25. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607

    Article  Google Scholar 

  26. Lee W, Kang SH, Kim JY, Kolekar GB, Sung YE, Han SH (2009) TiO2 nanotubes with a ZnO thin energy barrier for improved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnology 20:335706. doi:10.1088/0957-4484/20/33/335706

    Article  Google Scholar 

  27. Lee YL, Lo YS (2009) Highly efficient quantum-dots-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609. doi:10.1002/adfm.200800940

    Article  Google Scholar 

  28. Balis N, Dracopoulos V, Bourikas K, Lianos P (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim Acta 91:246–252. doi:10.1016/j.electacta.2013.01.004

    Article  Google Scholar 

  29. Choi Y, Seol M, Kim W, Yong K (2014) Chemical bath deposition of stoichiometric CdSe quantum dots for efficient quantum-dot-sensitized solar cell application. J Phys Chem C 118:5664–5670. doi:10.1021/jp411221q

    Article  Google Scholar 

  30. Feng S, Yang J, Liu M, Zhu H, Zhang J, Li G, Peng J, Liu Q (2012) CdS quantum dots sensitized TiO2 nanorod-array-film photoelectrode on FTO substrate by electrochemical atomic layer epitaxy method. Electrochim Acta 83:321–326. doi:10.1016/j.electacta.2012.07.130

    Article  Google Scholar 

  31. Zhang J, Yang J, Liu M, Li G, Li W, Gao S, Luo Y (2013) Fabrication of CdTe Quantum dots sensitized TiO2 nanorod-array-film photoanodes via the route of electrochemical atomic layer deposition. J Electrochem Soc 161:D55–D58. doi:10.1149/2.038401jes

    Article  Google Scholar 

  32. Chen Q, Xu D (2009) Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 113:6310–6314. doi:10.1021/jp900336e

    Article  Google Scholar 

  33. Jung SW, Kim JH, Kim H, Choi CJ, Ahn KS (2012) ZnS overlayer on in situ chemical bath deposited CdS quantum dot-assembled TiO2 films for quantum dot-sensitized solar cells. Curr Appl Phys 12:1459–1464. doi:10.1016/j.cap.2012.04.012

    Article  Google Scholar 

  34. Gooding AK, Gómez DE, Mulvaney P (2008) The effects of electron and hole injection on the photoluminescence of CdSe/CdS/ZnS nanocrystal monolayers. ACS Nano 2:669–676. doi:10.1021/nn7003469

    Article  Google Scholar 

  35. Shen Q, Kobayashi J, Diguna LJ, Toyoda T (2008) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J Appl Phys 103:084304. doi:10.1063/1.2903059

    Article  Google Scholar 

  36. Hsu SH, Hung SF, Chien SH (2013) CdS sensitized vertically aligned single crystal TiO2 nanorods on transparent conducting glass with improved solar cell efficiency and stability using ZnS passivation layer. J Power Sources 233:236–243. doi:10.1016/j.jpowsour.2013.01.089

    Article  Google Scholar 

  37. Tubtimtae A, Lee MW (2012) Effects of passivation treatment on performance of CdS/CdSe quantum-dot co-sensitized solar cells. Thin Solid Films 526:225–230. doi:10.1016/j.tsf.2012.11.031

    Article  Google Scholar 

  38. Kalanur SS, Chae SY, Joo OS (2013) Transparent Cu1.8S and CuS thin films on FTO as efficient counter electrode for quantum dot solar cells. Electrochim Acta 103:91–95. doi:10.1016/j.electacta.2013.04.041

    Article  Google Scholar 

  39. Cheng S, Fu W, Yang H, Zhang L, Ma J, Zhao H, Sun M, Yang L (2012) Photoelectrochemical performance of multiple semiconductors (CdS, CdSe, ZnS) cosensitized TiO2 photoelectrodes. J Phys Chem C 116:2615–2621. doi:10.1021/jp209258r

    Article  Google Scholar 

  40. Kim H, Jeong H, An TK, Park CE, Yong K (2013) Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting. ACS Appl Mater Interfaces 5:268–275. doi:10.1021/am301960h

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this work from the Key project of Tianjin Sci-Tech Support Program (No. 08ZCKFH01400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, L., Liu, Y. et al. Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J Mater Sci 49, 6392–6403 (2014). https://doi.org/10.1007/s10853-014-8366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8366-1

Keywords

Navigation