Skip to main content
Log in

Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of DC electric field on sintering and electrical conductivity of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), considered as highly promising cathode material for solid oxide fuel cell, is investigated in the present work. It is shown that sintering can be carried out at (furnace) temperature <100 °C under electric field ranging from 7.5 to 12.5 V/cm; such extraordinary effect is associated with the high electrical conductivity of LSCF through a peculiar mechanism. Microstructural analysis suggests similar morphology and enhanced grain growth compared to traditional sintering; with the proper choice of processing parameters (electric field and current density) during flash sintering, homogeneous porous microstructure for cathodic application can be obtained in very short time. The role of electric field and specimen temperature in flash sintering is analyzed for the understanding of observed outstanding event. The conductivity is found to be a coupled response of electric field and temperature; 2–3 V/cm and 15–25 °C are sufficient for dense LSCF specimen to stimulate the electric field effect on sintering. Electric field controls the conductivity in the same way as temperature does suggesting that under flash effect conductivity is increased by usual mechanism. On the same basis, flash sintering is proposed to be accelerated by the “polaron hopping” phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Prette ALG, Cologna M, Sglavo V, Raj R (2011) Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sources 196:2061–2065. doi:10.1016/j.jpowsour.2010.10.036

    Article  Google Scholar 

  2. Gaur A, Sglavo VM (2014) Flash-sintering of MnCo2O4 and its relation to phase stability. J Eur Ceram Soc 34:2391–2400. doi:10.1016/j.jeurceramsoc.2014.02.012

    Article  Google Scholar 

  3. Cologna M, Prette ALG, Raj R (2011) Flash-sintering of cubic yttria-stabilized zirconia at 750 °C for possible use in SOFC manufacturing. J Am Ceram Soc 94:316–319. doi:10.1111/j.1551-2916.2010.04267.x

    Article  Google Scholar 

  4. Downs JA, Sglavo VM (2013) Electric field assisted sintering of cubic zirconia at 390 °C. J Am Ceram Soc 96:1342–1344. doi:10.1111/jace.12281

    Article  Google Scholar 

  5. Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31:2827–2837. doi:10.1016/j.jeurceramsoc.2011.07.004

    Article  Google Scholar 

  6. Francis JSC, Cologna M, Montinaro D, Raj R (2013) Flash sintering of anode–electrolyte multilayers for SOFC applications. Am Ceram Soc 96:1352–1354

    Article  Google Scholar 

  7. Jha SK, Raj R (2013) The effect of electric field on sintering and electrical conductivity of titania. J Am Ceram Soc 97:527–534. doi:10.1111/jace.12682

    Article  Google Scholar 

  8. Zapata-Solvas E, Bonilla S, Wilshaw PR, Todd RI (2013) Preliminary investigation of flash sintering of SiC. J Eur Ceram Soc 33:2811–2816. doi:10.1016/j.jeurceramsoc.2013.04.023

    Article  Google Scholar 

  9. Tai L-W, Nasrallah MM, Anderson HU et al (1995) Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 2. The system La1−xSrxCo0.2Fe0.8O3. Solid State Ionics 76:255–271

    Google Scholar 

  10. Yi E-J, Yoon M-Y, Moon J-W, Hwang H-J (2010) Fabrication of a MnCo2O4/gadolinia-doped ceria (GDC) dual-phase composite membrane for oxygen separation. J Korean Ceram Soc 47:199–204. doi:10.4191/KCERS.2010.47.2.199

    Article  Google Scholar 

  11. Leng Y, Chan S, Liu Q (2008) Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte. Int J Hydrogen Energy 33:3808–3817. doi:10.1016/j.ijhydene.2008.04.034

    Article  Google Scholar 

  12. Kim W, Song H, Moon J, Lee H (2006) Intermediate temperature solid oxide fuel cell using (La, Sr)(Co, Fe)O3-based cathodes. Solid State Ionics 177:3211–3216. doi:10.1016/j.ssi.2006.07.049

    Article  Google Scholar 

  13. Stevenson JW, Armstrong TR, Carneim RD et al (1996) Electrochemical properties of La1−xMxCo1−yFeyO3-mixed conducting perovskites (M = Sr, Ba, Ca). J Electrochem Soc 143:2722–2729

    Article  Google Scholar 

  14. Tu HY, Takeda Y, Imanishi N, Yamamoto O (1999) Electrode in solid oxide fuel cells. Solid State Ionics 117:277–281

    Article  Google Scholar 

  15. Figueiredo FM, Labrincha JA (1997) Reactions between a zirconia-based electrolyte electrode materials. Solid State Ionics 101–103:343–349

    Article  Google Scholar 

  16. Kawada T, Yokokawa H, Dokiya M (1997) Ceria–zirconia composite electrolyte for solid oxide fuel cells. J Electroceramics 1:155–164

    Article  Google Scholar 

  17. Karakuscu A, Cologna M, Yarotski D et al (2012) Defect structure of flash-sintered strontium titanate. J Am Ceram Soc 95:2531–2536. doi:10.1111/j.1551-2916.2012.05240.x

    Article  Google Scholar 

  18. Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69:107–111. doi:10.1016/j.scriptamat.2013.02.020

    Article  Google Scholar 

  19. Massarotti V, Capsoni D, Bini M et al (1997) Electric and magnetic properties of LiMn2O4—and Li2MnO3—type oxides. J Solid State Chem 100:94–100

    Article  Google Scholar 

  20. Francis JSC, Raj R (2013) Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. J Am Ceram Soc 96:2754–2758. doi:10.1111/jace.12472

    Article  Google Scholar 

  21. Raj R (2012) Joule heating during flash-sintering. J Eur Ceram Soc 32:2293–2301. doi:10.1016/j.jeurceramsoc.2012.02.030

    Article  Google Scholar 

  22. Moure C, Fernandez JF, Villegas M, Duran P (1999) Non-ohmic behaviour and switching phenomena in YMnO3-based ceramic materials. J Eur Ceram Soc 19:131–137

    Article  Google Scholar 

  23. Ganichev S, Ziemann E, Prettl W et al (2000) Distinction between the Poole–Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys Rev B 61:10361–10365. doi:10.1103/PhysRevB.61.10361

    Article  Google Scholar 

  24. Triberis GP, Dimakogianni M (2009) Field and temperature dependence of the small polaron hopping electrical conductivity in 1D disordered systems. J Phys Condens Matter 21:385406. doi:10.1088/0953-8984/21/38/385406

    Article  Google Scholar 

  25. Zafar A, Imran Z, Rafiq MA, Hasan MM (2011) Evidence of Pool–Frankel conduction mechanism in Sr-doped lanthanum ferrite La1−xSrxFeO3 (0 ≤ x ≤ 1) system. In: Electronic Communication Photonics Conference (SIECPC), 2011 Saudi International, pp 1–4

  26. Bryksin VV, Damker T, Bottger H (1998) Motion of localized carriers in a strong electric field. J Phys Condens Matter 10:7907–7921

    Article  Google Scholar 

  27. Wang Z, Yu H, Su H (2013) The transport properties of oxygen vacancy-related polaron-like bound state in HfOx. Sci Rep 3:3246. doi:10.1038/srep03246

    Google Scholar 

  28. Zhang Y, Chang A, Cao J et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79:3155. doi:10.1063/1.1415412

    Article  Google Scholar 

  29. Tai L-W, Nasrallah MM, Anderson HU et al (1995) Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ionics 76:259–271

    Article  Google Scholar 

  30. Janek J, Korte C (1999) Electrochemical blackening of yttria-stabilized zirconia—morphological instability of the moving reaction front. Solid State Ionics 116:181–195

    Article  Google Scholar 

  31. Downs JA (2013) Mechanisms of Flash-sintering. University of Trento

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anshu Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, A., Sglavo, V.M. Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100 °C. J Mater Sci 49, 6321–6332 (2014). https://doi.org/10.1007/s10853-014-8357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8357-2

Keywords

Navigation