Skip to main content
Log in

Study on an antifouling and blood compatible poly(ethylene–vinyl acetate) material with fluorinated surface structure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel poly(ethylene–vinyl acetate) film with fluorinated surface structure was prepared via sequential surface reactions, which are alcoholysis reaction with sodium ethoxide and located fluorination reaction with 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(heptafluoropropoxy)propoxy] propionyl fluoride, respectively. The obtained novel film possesses ordered perfluoroalkyl ether surface layer proved by detailed ATR-FTIR, XPS, and contact angle measurement, which substantiates the success of this new route to get better-tailored surface meeting the biological needs. Hemocompatibility of the resultant films was evaluated by hemolysis test and platelet adhesion test. The results indicated that the poly(ethylene–vinyl acetate) film surface displayed low hemolytic activity and no platelet adhesion due to its extremely low surface tension, which results from the special micro-electric field of perfluoroalkyl ether layer. The yielded transparent film with good properties exhibits a promising application prospect in biology and medical science in view of its flexible substrate and unique biocompatible surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsuruta T (1996) Adv Polym Sci 126:1

    CAS  Google Scholar 

  2. Freier T (2006) Adv Polym Sci 203:1

    Article  CAS  Google Scholar 

  3. Mao C, Qiu Y, Sang H, Mei H, Zhu A, Shen J, Lin S (2004) Adv Colloid Interface Sci 110:5

    Article  CAS  PubMed  Google Scholar 

  4. Ratner BD (2008) Biomaterials 28:5144

    Article  Google Scholar 

  5. Uyama Y, Kato K, Ikada Y (1998) Adv Polym Sci 137:1

    Article  CAS  Google Scholar 

  6. Kasemo B (2002) Surf Sci 500:656

    Article  CAS  ADS  Google Scholar 

  7. Kakizawa S, Yamada K, Iino M, Watanabe M, Kano M (2003) Eur J Neurosci 17:545

    Article  PubMed  Google Scholar 

  8. Yin M, Yuan Y, Liu CS, Wang J (2009) Biomaterials 30:2764

    Article  CAS  PubMed  Google Scholar 

  9. Ratner BD (2000) J Biomater Sci Polym Ed 11:1107

    Article  CAS  PubMed  Google Scholar 

  10. Morimoto N, Iwasaki Y, Nakabayashi N, Ishihara K (2002) Biomaterials 23:4881

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Annich GM, Miskulin J, Osterholzer K, Merz SI, Bartlett RH, Meyerhoff ME (2002) Biomaterials 23:1485

    Article  CAS  PubMed  Google Scholar 

  12. Shpuntoff HML, Wen MC, Singh A, Brenner N, Gambino R, Pernodet N, Isseroff R, Rafailovich M, Sokolov J (2009) Biomaterials 30:8

    Article  Google Scholar 

  13. Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A (2005) Biomaterials 26:3495

    Article  CAS  PubMed  Google Scholar 

  14. Singhal JP, Ray AR (2002) Biomaterials 23:1139

    Article  CAS  PubMed  Google Scholar 

  15. Chen KY, Kuo JF, Chen CY (2002) Biomaterials 21:161

    Article  Google Scholar 

  16. Huang N, Yang P, Cheng X, Leng Y, Zheng X, Cai G, Zhen Z, Chang F, Chen Y, Lix X, Xi T (1998) Biomaterials 19:771

    Article  CAS  Google Scholar 

  17. Rossi NAA, Mustafa I, Jackson JK, Burt HM, Horte SA, Scott MD, Kizhakkedathu JN (2009) Biomaterials 30:638

    Article  CAS  PubMed  Google Scholar 

  18. Pagliaro M, Ciriminna R (2005) J Mater Chem 15:4981

    Article  CAS  Google Scholar 

  19. Riess JG, Krafft MP (1998) Biomaterials 19:1529

    Article  CAS  PubMed  Google Scholar 

  20. Napier ME, Friend CM (1996) Langmuir 12:1800

    Article  CAS  Google Scholar 

  21. Grondahl M, Gustafsson A, Gatenholm P (2006) Macromolecules 39:2718

    Article  ADS  Google Scholar 

  22. Ernsting MJ, Bonin GC, Yang M, Labow RS, Santerre JP (2005) Biomaterials 26:6536

    Article  CAS  PubMed  Google Scholar 

  23. Yano M, Taketsugu T, Hori K, Okamoto H, Takenaka S (2004) Chem Eur J 10:3991

    Article  CAS  Google Scholar 

  24. Clark DT, Feast WJ, Musgrave WKR, Ritchie I (1975) J Polym Sci Chem Ed 13:857

    Article  CAS  Google Scholar 

  25. Corbin GA, Cohen RE, Baddour RF (1985) Macromolecules 18:98

    Article  CAS  ADS  Google Scholar 

  26. Valdes TI, Ciridon W, Ratner BD, Bryers JD (2008) Biomaterials 29:1356

    Article  CAS  PubMed  Google Scholar 

  27. Lin JC, Tiong SL, Chen CY (2000) J Biomater Sci Polymer Ed 11:701

    Article  Google Scholar 

  28. Woodward I, Schofield WCE, Roucoules V, Badyal JPS (2003) Langmuir 19:3432

    Article  CAS  Google Scholar 

  29. Senesi GS, D’Aloia E, Gristina R, Favia P, d’Agostino R (2007) Surf Sci 601:1019

    Article  CAS  ADS  Google Scholar 

  30. Lee EJ, Lee SH, Kim HW, Kong YM, Kim HE (2005) Biomaterials 26:3843

    Article  CAS  PubMed  Google Scholar 

  31. Pu FR, Williams RL, Markkula TK, Hunt JA (2002) Biomaterials 23:2411

    Article  CAS  PubMed  Google Scholar 

  32. Clarotti G, Schue F, Sledz J, Aoumar AAB, Geckeler KE, Orsetti A, Paleirac G (1992) Biomaterials 13:832

    Article  CAS  PubMed  Google Scholar 

  33. Chen H, Li H, Pei SP, Wen XW, Zhang YM (2009) Polymer 50:4317

    Article  CAS  Google Scholar 

  34. Han LL, Zhang YM, Li H, Li L (2009) Colloids Surf A 334:176

    Article  CAS  Google Scholar 

  35. Li H, Zhang YM, Zhang H, Xue MZ, Liu YG (2006) J Polym Sci Chem Ed 44:3853

    Article  CAS  Google Scholar 

  36. Turri S, Barchiesi E (1995) Macromolecules 28:7271

    Article  CAS  ADS  Google Scholar 

  37. Persico DF, Gerhardt GE, Lagow RJ (1985) J Am Chem Soc 107:1197

    Article  CAS  Google Scholar 

  38. O’Hagan D (2008) Chem Soc Rev 37:308

    Article  PubMed  Google Scholar 

  39. Takeuchi T, Mori S (1965) Anal Chem 37:589

    Article  CAS  Google Scholar 

  40. Ni HB, Li ZH, Dou HY, Li H, Zha CX (2006) J Fluorine Chem 127:1036

    Article  CAS  Google Scholar 

  41. Tao G, Gong A, Lu J, Sue HJ, Bergbreiter DE (2001) Macromolecules 34:7672

    Article  CAS  ADS  Google Scholar 

  42. Bureau E, Hirata Y, Cabot C, Andrio Balado A, Marais S, Saiter J (2003) J Therm Anal Calorim 71:205

    Article  CAS  Google Scholar 

  43. Zhang FY, Advani SG, Prasad AK, Boggs ME, Sullivan SP, Beebe TP (2009) Electrochim Acta 54:4025

    Article  CAS  Google Scholar 

  44. Ramasamy S, Pradeep T (1995) J Chem Phys 103:485

    Article  CAS  ADS  Google Scholar 

  45. Jablonski A (2009) Surf Sci 603:1342

    Article  CAS  ADS  Google Scholar 

  46. Anton D (1998) Adv Mater 10:1197

    Article  CAS  Google Scholar 

  47. Motlagh D, Yang J, Lui KY, Webb AR, Ameer GA (2006) Biomaterials 27:4315

    Article  CAS  PubMed  Google Scholar 

  48. Coelho MAN, Vieira EP, Motschmann H, Mohwald H, Thunemann AF (2003) Langmuir 19:7544

    Article  CAS  Google Scholar 

  49. Wang DA, Chen BI, Ji J, Feng LX (2002) Bioconjugate Chem 13:792

    Article  CAS  Google Scholar 

  50. Peter K, Schwarz M, Conradt C, Nordt T, Moser M, Kubler W, Bode C (1999) Circulation 100:1533

    CAS  PubMed  Google Scholar 

  51. Weber N, Wendel HP, Ziemer G (2002) Biomaterials 23:429

    Article  CAS  PubMed  Google Scholar 

  52. Rao GHR, Chandy T (1999) Bull Mater Sci 22:633

    Article  CAS  Google Scholar 

  53. Jisr RM, Rmaile HH, Schlenoff JB (2005) Angew Chem Int Ed 44:782

    Article  CAS  Google Scholar 

  54. Biffinger JC, Kim HW, DiMagno SG (2004) ChemBioChem 5:622

    Article  CAS  PubMed  Google Scholar 

  55. Scheirs J (1997) Modern fluoropolymers: high performance polymers for diverse applications. Wiley, Chichester

    Google Scholar 

  56. Fried JR, Hu N (2003) Polymer 44:4363

    Article  CAS  Google Scholar 

  57. Ghenciu EG, Beckman EJ (1997) Ind Eng Chem Res 36:5366

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High Technology Research and Development Program (“863” Program, No.2006AA03Z216). The authors also acknowledge Dongyue Shenzhou New Material Company for offer of materials, Ms. Wenjuan Yu in Instrumental Analysis Center of Shanghai Jiao Tong University for the help in ATR-IR test, and Dr. H. Huang at University of Connecticut for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ming Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, XW., Pei, SP., Li, H. et al. Study on an antifouling and blood compatible poly(ethylene–vinyl acetate) material with fluorinated surface structure. J Mater Sci 45, 2788–2797 (2010). https://doi.org/10.1007/s10853-010-4268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4268-z

Keywords

Navigation