Skip to main content
Log in

Review: degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The literature dealing with degradation-induced embrittlement mechanisms in semi-crystalline polymers having their amorphous phase in rubbery state is reviewed. It is first demonstrated that the decrease of molar mass resulting from a quasi-homogeneous chain scission process is responsible for embrittlement. The main specificity of the polymer family under study is that embrittlement occurs at a very low conversion of the degradation process, while the entanglement network in the amorphous phase is slightly damaged. In these polymers, chain scission induces chemicrystallization. The analyses of available data on this process show that it is characterized by a relatively high yield: about one half entanglement strands integrate the crystalline phase after one chain scission. A simple relationship expressing the chemicrystallization yield for a given polymer structure is proposed. Chain scission and chemicrystallization can lead to embrittlement through two possible causal chains: (1) chain scission → molar mass decrease → chemicrystallization → decrease of the interlamellar spacing → embrittlement. (2) Chain scission → molar mass decrease → chemicrystallization → decrease of the tie-macromolecule concentration → embrittlement. At this state of our knowledge, both causal chains are almost undistinguishable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fayolle B, Audouin L, Verdu J (2000) Polym Degrad Stab 70:333. doi:https://doi.org/10.1016/S0141-3910(00)00108-7

    Article  CAS  Google Scholar 

  2. Brown N, Lu X, Huang YL, Quian R (1991) Macromol Chem Macromol Symp 41:55

    Article  CAS  Google Scholar 

  3. Kausch HH, Heymans N, Plummer CF, Decroly P (2001) Matériaux polymères, propriétés Mécaniques et Physiques. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  4. Michler GH, Balta Calleja FJ (eds) (2005) Mechanical properties of polymer based on nanostructure and morphology, chap. 5.7. Taylor and Francis

  5. Khelidj N, Colin X, Audouin L, Verdu J, Monchy-Leroy C, Prunier V (2006) Polym Degrad Stab 91:1593. doi:https://doi.org/10.1016/j.polymdegradstab.2005.09.011

    Article  CAS  Google Scholar 

  6. Richaud E, Farcas F, Bartoloméo P, Fayolle B, Audouin L, Verdu J (2006) Polym Degrad Stab 91:398. doi:https://doi.org/10.1016/j.polymdegradstab.2005.04.043

    Article  CAS  Google Scholar 

  7. Richaud E, Farcas F, Fayolle B, Audouin L, Verdu J (2008) J Appl Polym Sci 110:3313

    Article  CAS  Google Scholar 

  8. Griffith AA (1920) Philos Trans R Soc Lond A 221:163

    Google Scholar 

  9. Celina M, George GA, Lacey DJ, Billingham NC (1995) Polym Degrad Stab 47:311. doi:https://doi.org/10.1016/0141-3910(94)00134-T

    Article  CAS  Google Scholar 

  10. Richters P (1970) Macromolecules 3:262. doi:https://doi.org/10.1021/ma60014a027

    Article  CAS  Google Scholar 

  11. Fayolle B, Audouin L, George GA, Verdu J (2002) Polym Degrad Stab 77:515. doi:https://doi.org/10.1016/S0141-3910(02)00110-6

    Article  CAS  Google Scholar 

  12. Zhang XC, Cameron RE (1999) J Appl Polym Sci 74:2234. doi:10.1002/(SICI)1097-4628(19991128)74:9<2234::AID-APP12>3.0.CO;2-S

    Article  CAS  Google Scholar 

  13. Brambilla L, Consolati G, Gallo R, Quasso F, Severini F (2003) Polymer 44:1041. doi:https://doi.org/10.1016/S0032-3861(02)00904-7

    Article  CAS  Google Scholar 

  14. Girois S, Audouin L, Verdu J, Delprat P, Marot G (1996) Polym Degrad Stab 51:125. doi:https://doi.org/10.1016/0141-3910(95)00166-2

    Article  CAS  Google Scholar 

  15. Severini F, Gallo R, Ipsale S (1988) Polym Degrad Stab 22:53. doi:https://doi.org/10.1016/0141-3910(88)90056-0

    Article  CAS  Google Scholar 

  16. Fayolle B, Audouin L, Verdu J (2002) Polym Degrad Stab 75:123. doi:https://doi.org/10.1016/S0141-3910(01)00211-7

    Article  CAS  Google Scholar 

  17. Rapoport NYa, Shibriaeva LC, Zaikov VE, Iring M, Fodor ZS, Tüdós F (1985) Polym Degrad Stab 12:191. doi:https://doi.org/10.1016/0141-3910(85)90088-6

    Article  CAS  Google Scholar 

  18. Yakimets-Pilot I (2004) PhD thesis, UTC, Compiegne, France, p 121

  19. Gensler R (1998) PhD thesis, EPFL, Lausanne, Switzerland, Nr 1863

  20. Kagiya T, Nishimoto S, Watanabe Y, Kato M (1985) Polym Degrad Stab 12:261. doi:https://doi.org/10.1016/0141-3910(85)90094-1

    Article  CAS  Google Scholar 

  21. Viebke J, Elble E, Gedde UW (1994) Polym Eng Sci 36:458

    Article  Google Scholar 

  22. Horgh PL, Klemchuck PP (1984) Polym Degrad Stab 8:235

    Google Scholar 

  23. Iring M, Tüdós F, Fodor ZS, Kelen T (1980) Polym Degrad Stab 2:143. doi:https://doi.org/10.1016/0141-3910(80)90036-1

    Article  CAS  Google Scholar 

  24. Mendes LC, Rufino ES, de Paula FOC, Torres AC Jr (2003) Polym Degrad Stab 79:371. doi:https://doi.org/10.1016/S0141-3910(02)00337-3

    Article  CAS  Google Scholar 

  25. Suarez JCM, Mano EB, Pereira RA (2000) Polym Degrad Stab 69:217. doi:https://doi.org/10.1016/S0141-3910(00)00065-3

    Article  CAS  Google Scholar 

  26. Fayolle B, Colin X, Audouin L, Verdu J (2007) Polym Degrad Stab 92:231. doi:https://doi.org/10.1016/j.polymdegradstab.2006.11.012

    Article  CAS  Google Scholar 

  27. Fayolle B, Verdu J, Bastard M, Piccoz D (2008) J Appl Polym Sci 107:1783. doi:https://doi.org/10.1002/app.26648

    Article  CAS  Google Scholar 

  28. Sugimoto M, Ishikawa M, Hatada K (1995) Polymer 36:3675. doi:https://doi.org/10.1016/0032-3861(95)93769-I

    Article  CAS  Google Scholar 

  29. Zweifel H (2001) In: Zweifel H (ed) Plastic additives hanbook, 5th edn. Hanser, p 22

  30. Fayolle B, Tcharkhtchi A, Verdu J (2004) Polym Test 23:939. doi:https://doi.org/10.1016/j.polymertesting.2004.04.013

    Article  CAS  Google Scholar 

  31. Severini F, Gallo R, Ipsale S (1988) Polym Degrad Stab 22:185. doi:https://doi.org/10.1016/0141-3910(88)90041-9

    Article  CAS  Google Scholar 

  32. Gardner RJ, Martin JB (1977) SPE ANTEC Techn Papers 24:328

    Google Scholar 

  33. Greco R, Ragosta G (1987) Plastics Rubber Process Appl 7:163

    CAS  Google Scholar 

  34. Wu S (1989) J Polym Sci B Polym Phys 27:723. doi:https://doi.org/10.1002/polb.1989.090270401

    Article  CAS  Google Scholar 

  35. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, p 465

    Google Scholar 

  36. Plummer CJG (2005) In: Michler GH, Balta-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology, chap. 6. Taylor and Francis, pp 215–244

  37. Tervoort TA, Visjager J, Smith P (2005) Macromolecules 35:8467. doi:https://doi.org/10.1021/ma020579g

    Article  Google Scholar 

  38. Benkoski JJ, Flores P, Kramer EJ (2003) Macromolecules 36:3289. doi:https://doi.org/10.1021/ma034013j

    Article  CAS  Google Scholar 

  39. Oswald HJ, Turi A (1965) Polym Eng Sci 5:152

    Article  CAS  Google Scholar 

  40. DiMarzio A, Guttman CM (1980) Polymer 21:733. doi:https://doi.org/10.1016/0032-3861(80)90288-8

    Article  CAS  Google Scholar 

  41. Saito O (1968) J Phys Soc Jpn 13:1451. doi:https://doi.org/10.1143/JPSJ.13.1451

    Article  Google Scholar 

  42. Kennedy MA, Peacock AJ, Mandelkern L (1994) Macromolecules 27:5297. doi:https://doi.org/10.1021/ma00097a009

    Article  CAS  Google Scholar 

  43. Andrews JM, Ward IM (1970) J Mater Sci 5:411. doi:https://doi.org/10.1007/BF00550003

    Article  CAS  Google Scholar 

  44. Williamson GR, Wright B, Haward RW (1964) J Appl Chem 14:131

    Article  CAS  Google Scholar 

  45. Popli R, Mandelkern L (1987) J Polym Sci B Polym Phys 25:441. doi:https://doi.org/10.1002/polb.1987.090250301

    Article  CAS  Google Scholar 

  46. Warner SB (1978) J Polym Sci B Polym Phys 16:2139

    Article  CAS  Google Scholar 

  47. Robelin-Souffache E, Rault J (1989) Macromolecules 22:3581. doi:https://doi.org/10.1021/ma00199a015

    Article  CAS  Google Scholar 

  48. MacMahon W, Birdsall HA, Johnson GR, Camilli CT (1959) J Chem Eng Data 4:57. doi:https://doi.org/10.1021/je60001a009

    Article  Google Scholar 

  49. Winslow FH, Aloisio CJ, Hawkins WL, Matreyek W, Matsuoka S (1963) Chem Ind Lond 533:1465

    Google Scholar 

  50. Winslow FH, Hellman MY, Matreyek W, Skills SM (1966) Polym Eng Sci 6:273

    Article  CAS  Google Scholar 

  51. Luongo JP (1963) J Polym Sci B Polym Phys 1:141

    Article  CAS  Google Scholar 

  52. Miyagi A, Wunderlich B (1972) J Polym Sci B Polym Phys 10:2073

    Article  CAS  Google Scholar 

  53. Ellison S, Fisher LD, Alger KW, Zeronian SH (1982) J Appl Polym Sci 27:247. doi:https://doi.org/10.1002/app.1982.070270126

    Article  CAS  Google Scholar 

  54. Ballara A, Verdu J (1989) Polym Degrad Stab 26:361. doi:https://doi.org/10.1016/0141-3910(89)90114-6

    Article  CAS  Google Scholar 

  55. Wyzgoski MG (1981) J Appl Polym Sci 26:1689. doi:https://doi.org/10.1002/app.1981.070260524

    Article  CAS  Google Scholar 

  56. Mucha M, Kryszewski M (1980) Colloid Polym Sci 258:743

    Article  CAS  Google Scholar 

  57. Mathur AB, Mathur GN (1982) Polymer (Guildf) 23:54. doi:https://doi.org/10.1016/0032-3861(82)90014-3

    Article  CAS  Google Scholar 

  58. Gensler R, Plummer CJG, Kausch H-H, Kramer E, Pauquet J-R, Zweifel H (2000) Polym Degrad Stab 67:195. doi:https://doi.org/10.1016/S0141-3910(99)00113-5

    Article  CAS  Google Scholar 

  59. Karlsson K, Smith GB, Gedde UW (1992) Polym Eng Sci 32:699

    Article  Google Scholar 

  60. Fayolle B, Verdu J, Piccoz D, Dahoun A, Hiver JM, G’sell C, J Appl Polym Sci (in press)

  61. Blais P, Carlsson DJ, Wiles DM (1972) J Polym Sci A-1 Polym Chem 10:1077. doi:https://doi.org/10.1002/pol.1972.150100412

    Article  CAS  Google Scholar 

  62. Rabello MS, White JR (1997) Polym Degrad Stab 56:55. doi:https://doi.org/10.1016/S0141-3910(96)00202-9

    Article  CAS  Google Scholar 

  63. Kostoski D, Stojanović Z (1995) Polym Degrad Stab 47:353. doi:https://doi.org/10.1016/0141-3910(94)00126-X

    Article  CAS  Google Scholar 

  64. Sen K, Kumar P (1995) J Appl Polym Sci 55:857. doi:https://doi.org/10.1002/app.1995.070550603

    Article  CAS  Google Scholar 

  65. Zhang RC, Cameron RE (1994) J Appl Polym Sci 74:2234. doi:10.1002/(SICI)1097-4628(19991128)74:9<2234::AID-APP12>3.0.CO;2-S

    Article  Google Scholar 

  66. Lassiaz M, Pouyet J, Verdu J (1994) J Mater Sci 29:2177. doi:https://doi.org/10.1007/BF01154697

    Article  CAS  Google Scholar 

  67. Erlandsson B, Karlsson S, Albertsson AC (1997) Polym Degrad Stab 55:237. doi:https://doi.org/10.1016/S0141-3910(96)00139-5

    Article  CAS  Google Scholar 

  68. Liu M, Horrocks AR, Hall ME (1995) Polym Degrad Stab 49:151. doi:https://doi.org/10.1016/0141-3910(95)00036-L

    Article  CAS  Google Scholar 

  69. Quereshi FS, Amin MB, Maadhah AG, Hamid SH (1989) Polym Plast Techn Eng 28:649. doi:https://doi.org/10.1080/03602558908049820

    Article  Google Scholar 

  70. Papet G, Jirackova-Audouin L, Verdu J (1987) Int J Radiat Appl Instr C Radiat Phys Chem 29:65. doi:https://doi.org/10.1016/1359-0197(87)90063-4

    CAS  Google Scholar 

  71. Langlois V, Meyer M, Audouin L, Verdu J (1992) Polym Degrad Stab 36:207. doi:https://doi.org/10.1016/0141-3910(92)90057-C

    Article  CAS  Google Scholar 

  72. Nitta KH, Tanaka A (2001) Polymer 42:1219. doi:https://doi.org/10.1016/S0032-3861(00)00418-3

    Article  CAS  Google Scholar 

  73. Voigt-Martin IG, Mandelkern L (1984) J Polym Sci B Polym Phys 22:1901

    Article  CAS  Google Scholar 

  74. Jordens K, Wilkes GL, Janzen J, Rohlfing DC, Welch MB (2000) Polymer 41:7175. doi:https://doi.org/10.1016/S0032-3861(00)00073-2

    Article  CAS  Google Scholar 

  75. Galeski A (2005) In: Michler GH, Balta-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology, chap. 5. Taylor & Francis, Boca Raton, FL, pp 159–211

  76. Henning S, Michler GH (2005) In: Michler GH, Balta-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology, chap. 7. Taylor & Francis, Boca Raton, FL, pp 245–278

  77. Trankner T, Hedenquist M, Gedde UW (1994) Polym Eng Sci 34:1581

    Article  CAS  Google Scholar 

  78. Bedoui F, Diani J, Régnier G (2004) Polymer (Guildf) 45:2433. doi:https://doi.org/10.1016/j.polymer.2004.01.028

    Article  CAS  Google Scholar 

  79. Capaccio C, Ward IM, Wilding MA, Longman GWJ (1978) J Macromol Sci Phys B25:381

    Article  Google Scholar 

  80. Gedde UW, Ifwarson M (1990) Polym Eng Sci 30:202. doi:https://doi.org/10.1002/pen.760300403

    Article  CAS  Google Scholar 

  81. Chaupart N (1995) PhD thesis, Université Pierre et marie Curie, Paris, pp 131–134

  82. Men YF, Rieger J, Enderle H-F, Lilge D (2004) Eur Phys J 15:421

    CAS  Google Scholar 

  83. Peterlin A (1965) J Polym Sci C9:61

    Google Scholar 

  84. Seguela R (2005) J Polym Sci B Polym Phys 43:1729. doi:https://doi.org/10.1002/polb.20414

    Article  CAS  Google Scholar 

  85. Krigbaum WR, Roe R-J, Smith KJ (1964) Polymer (Guildf) 5:533. doi:https://doi.org/10.1016/0032-3861(64)90202-2

    Article  CAS  Google Scholar 

  86. Huang Y-L, Brown N (1991) J Polym Sci B Polym Phys 29:129. doi:https://doi.org/10.1002/polb.1991.090290116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Fayolle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayolle, B., Richaud, E., Colin, X. et al. Review: degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state. J Mater Sci 43, 6999–7012 (2008). https://doi.org/10.1007/s10853-008-3005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3005-3

Keywords

Navigation