Skip to main content
Log in

Non-monotone Boosted DC and Caputo Fractional Tailored Finite Point Algorithm for Rician Denoising and Deblurring

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Since MRI is often corrupted by Rician noise, in medical image processing, Rician denoising and deblurring is an important research. In this work, considering the validity of the non-convex log term in the Rician denoising and deblurring model estimated by the maximum a posteriori (MAP) and total variation, we apply nmBDCA to deal with the model. A non-monotonic line search applied in nmBDCA can achieve possible growth of objective function values controlled by parameters. After that, the obtained convex problem is solved separately by alternating direction method of multipliers (ADMM). For \(u-\)subproblem in ADMM scheme, Caputo fractional derivative and tailored finite point method are applied to denoising, which retain more texture details and suppress the staircase effect. We also demonstrate the convergence of the model and perform the stability analysis on the numerical scheme. Numerical results show that our method can well improve the quality of image restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang, G., Wei, W., Pan, Z.: Anisotropic variational models for image denoising based on directional hessian. J. Math. Imag. Vis. 65(3), 414–436 (2023)

    Article  MathSciNet  Google Scholar 

  2. Wen, Y., Vese, L.A., Shi, K., Guo, Z., Sun, J.: Nonlocal adaptive biharmonic regularizer for image restoration. J. Math. Imag. Vis. 65(3), 453–471 (2023)

    Article  MathSciNet  Google Scholar 

  3. Liao, X., Feng, M.: Time-fractional diffusion equation-based image denoising model. Nonlinear Dyn. 103, 1999–2017 (2021)

    Article  Google Scholar 

  4. Liu, H., Tai, X.-C., Kimmel, R., Glowinski, R.: Elastica models for color image regularization. SIAM J. Imag. Sci. 16(1), 461–500 (2023)

    Article  MathSciNet  Google Scholar 

  5. Duan, Y., Zhong, Q., Tai, X.-C., Glowinski, R.: A fast operator-splitting method for beltrami color image denoising. J. Sci. Comput. 92(3), 89 (2022)

    Article  MathSciNet  Google Scholar 

  6. Liu, R.W., Shi, L., Huang, W., Xu, J., Yu, S.C.H., Wang, D.: Generalized total variation-based mri rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imag. 32(6), 702–720 (2014)

    Article  Google Scholar 

  7. Nowak, R.D.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 8(10), 1408–1419 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Pérez, G., Conci, A., Moreno, A.B., Hernandez-Tamames, J.A.: Rician noise attenuation in the wavelet packet transformed domain for brain mri. Integrated Comput.-Aided Eng. 21(2), 163–175 (2014)

    Article  Google Scholar 

  9. Akindele, R.G., Yu, M., Kanda, P.S., Owoola, E.O., Aribilola, I.: Denoising of nifti (mri) images with a regularized neighborhood pixel similarity wavelet algorithm. Sensors 23(18), 7780 (2023)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Kang, M., Jung, M., Kang, M.: Rician denoising and deblurring using sparse representation prior and nonconvex total variation. J. Vis. Commun. Image Represent. 54, 80–99 (2018)

    Article  Google Scholar 

  11. Leal, N., Zurek, E., Leal, E.: Non-local svd denoising of mri based on sparse representations. Sensors 20(5), 1536 (2020)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Wu, Z., Chen, X., Xie, S., Shen, J., Zeng, Y.: Super-resolution of brain mri images based on denoising diffusion probabilistic model. Biomed. Signal Process. Control 85, 104901 (2023)

    Article  Google Scholar 

  13. Pal, C., Das, P., Chakrabarti, A., Ghosh, R.: Rician noise removal in magnitude mri images using efficient anisotropic diffusion filtering. Int. J. Imaging Syst. Technol. 27(3), 248–264 (2017)

    Article  Google Scholar 

  14. Kala, R., Deepa, P.: Adaptive hexagonal fuzzy hybrid filter for rician noise removal in mri images. Neural Comput. Appl. 29, 237–249 (2018)

    Article  Google Scholar 

  15. Lee, D., Yun, C.-S., Kang, S.-H., Park, M., Lee, Y.: Performance evaluation of 3d median modified wiener filter in brain t1-weighted magnetic resonance imaging. Nucl. Instrum. Methods Phys. Res., Sect. A 1047, 167779 (2023)

    Article  CAS  Google Scholar 

  16. Lin, Y.-C., Huang, H.-M.: Denoising of multi b-value diffusion-weighted mr images using deep image prior. Phys. Med. Biol. 65(10), 105003 (2020)

    Article  PubMed  Google Scholar 

  17. Augustin, A.M., Kesavadas, C., Sudeep, P.: An improved deep persistent memory network for rician noise reduction in mr images. Biomed. Signal Process. Control 77, 103736 (2022)

    Article  Google Scholar 

  18. Chen, Z., Pawar, K., Ekanayake, M., Pain, C., Zhong, S., Egan, G.F.: Deep learning for image enhancement and correction in magnetic resonance imaging-state-of-the-art and challenges. J. Digit. Imag. 36(1), 204–230 (2023)

    Article  Google Scholar 

  19. Wei, D., Weng, S., Li, F.: Nonconvex rician noise removal via convergent plug-and-play framework. Appl. Math. Model. 123, 197–212 (2023)

    Article  MathSciNet  Google Scholar 

  20. Getreuer, P., Tong, M., Vese, L.A.: A variational model for the restoration of mr images corrupted by blur and rician noise. In: International Symposium on Visual Computing, pp. 686–698 (2011). Springer

  21. Chen, L., Zeng, T.: A convex variational model for restoring blurred images with large rician noise. J. Math. Imag. Vis. 53(1), 92–111 (2015)

    Article  MathSciNet  Google Scholar 

  22. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  23. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  Google Scholar 

  24. Yuan, J.: An improved variational model for denoising magnetic resonance images. Comput. Math. Appl. 76(9), 2212–2222 (2018)

    Article  MathSciNet  Google Scholar 

  25. Yang, W., Huang, Z., Zhu, W.: An efficient tailored finite point method for rician denoising and deblurring. Commun. Comput. Phys. 24(4), 1169–1195 (2018)

    Article  MathSciNet  Google Scholar 

  26. Huang, Z., Yang, Y.: Tailored finite point method for parabolic problems. Comput. Methods Appl. Math. 16(4), 543–562 (2016)

    Article  MathSciNet  Google Scholar 

  27. Han, H., Huang, Z.: Tailored finite point method based on exponential bases for convection-diffusion-reaction equation. Math. Comput. 82(281), 213–226 (2013)

    Article  MathSciNet  Google Scholar 

  28. Han, H., Huang, Z.: The tailored finite point method. Comput. Methods Appl. Math. 14(3), 321–345 (2014)

    Article  MathSciNet  Google Scholar 

  29. Lu, J., Tian, J., Jiang, Q., Liu, X., Hu, Z., Zou, Y.: Rician noise removal via weighted nuclear norm penalization. Appl. Comput. Harmon. Anal. 53, 180–198 (2021)

    Article  MathSciNet  Google Scholar 

  30. Wu, T., Gu, X., Li, Z., Li, Z., Niu, J., Zeng, T.: Efficient boosted dc algorithm for nonconvex image restoration with rician noise. SIAM J. Imag. Sci. 15(2), 424–454 (2022)

    Article  MathSciNet  Google Scholar 

  31. Aragón Artacho, F.J., Fleming, R.M., Vuong, P.T.: Accelerating the dc algorithm for smooth functions. Math. Program. 169(1), 95–118 (2018)

    Article  MathSciNet  Google Scholar 

  32. Phan, T.D.K.: A spatially variant high-order variational model for rician noise removal. PeerJ Comput. Sci. 9, 1579 (2023)

    Article  Google Scholar 

  33. Yang, W., Huang, Z., Zhu, W.: A first-order rician denoising and deblurring model. Inverse Problems and Imaging (2023)

  34. Zhu, W.: A first-order image restoration model that promotes image contrast preservation. J. Sci. Comput. 88(2), 46 (2021)

    Article  MathSciNet  Google Scholar 

  35. Aragón Artacho, F.J., Vuong, P.T.: The boosted difference of convex functions algorithm for nonsmooth functions. SIAM J. Optim. 30(1), 980–1006 (2020)

    Article  MathSciNet  Google Scholar 

  36. Ferreira, O.P., Santos, E.M., Souza, J.C.O.: A boosted dc algorithm for non-differentiable dc components with non-monotone line search. arXiv preprint arXiv:2111.01290 (2021)

  37. Sar, E.Y., Giresunlu, I.B.: Fractional differential equations. Pramana-J. Phys 87, 17 (2016)

    ADS  Google Scholar 

  38. Bai, J., Feng, X.-C.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16(10), 2492–2502 (2007)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  39. Bai, J., Feng, X.-C.: Image denoising using generalized anisotropic diffusion. J. Math. Imag. Vis. 60(7), 994–1007 (2018)

    Article  MathSciNet  Google Scholar 

  40. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  Google Scholar 

  41. Glowinski, R., Marrocco, A.: On the solution of a class of non linear dirichlet problems by a penalty-duality method and finite elements of order one. In: Optimization Techniques IFIP Technical Conference, pp. 327–333 (1975). Springer

  42. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

    Article  Google Scholar 

  43. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  Google Scholar 

  44. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  Google Scholar 

  45. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® in Mach. Learn. 3(1), 1–122

  46. Beck, A.: First-order methods in optimization. Soc. Ind. Appl. Math. 25 (2017)

  47. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

Download references

Acknowledgements

The authors would like to thank the editor and reviewers for carefully reading earlier versions of this manuscript and providing valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Contributions

Kexin Sun: Conceptualization, Methodology, Software, Data curation, Investigation, Formal Analysis, Writing—Original Draft Youcai Xu: Data Curation, Visualization, Investigation, Supervision Minfu Feng: Conceptualization, Funding Acquisition, Resources, Supervision, Writing—Review and Editing.

Corresponding author

Correspondence to Minfu Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Xu, Y. & Feng, M. Non-monotone Boosted DC and Caputo Fractional Tailored Finite Point Algorithm for Rician Denoising and Deblurring. J Math Imaging Vis 66, 167–184 (2024). https://doi.org/10.1007/s10851-023-01168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-023-01168-5

Keywords

Mathematics Subject Classification

Navigation