Skip to main content
Log in

Synthesis of p-methoxybenzaldehyde/β-cyclodextrin inclusion complex and studies of its release properties in polylactic acid film

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Nowadays, due to the rapid development of the times, the study of green controlled release active packaging film has become an integral part of food packaging industry. In order to prepare eco-friendly food green packaging with sustainable release of active ingredients, this study used saturated aqueous solution method to prepare p-methoxybenzaldehyde/β-cyclodextrin inclusion complex, and analyzed the effects of three single factors, namely inclusion temperature, mixing time and inclusion ratio, on the entrapment efficiency and loading capacity. It is found that when the inclusion temperature was 50 °C, mixing time was 4 h and inclusion ratio was 10:1, the entrapment efficiency was 75.18%, the loading capacity could reach 7.52%. Meanwhile, the molecular docking method was used to study molecular interactions, indicating that p-methoxybenzaldehyde can form stable inclusion complexes with β-cyclodextrin. Polylactic acid (PLA) was then used as the base fluid to prepare a p-methoxybenzaldehyde releasable film, which was protected by β-cyclodextrin resulting in a significantly lower release rate than that of added p-methoxybenzaldehyde directly to the film. The inclusion complex was only physical mixing and did not react with PLA, and the inclusion of β-cyclodextrin allowed for effective control of the continuous release of p-methoxybenzaldehyde from the film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lacoste, A., Schaich, K.M., Zumbrunnen, D., Yam, K.L.: Advancing controlled release packaging through smart blending. Packag. Technol. Sci. 18, 77–87 (2005). https://doi.org/10.1002/pts.675

    Article  CAS  Google Scholar 

  2. Okada, M.: Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 27, 87–133 (2002). https://doi.org/10.1016/S0079-6700(01)00039-9

    Article  CAS  Google Scholar 

  3. Tsuji, H., Ikada, Y.: Properties and morphologies of poly(L-lactide): 1 annealing condition effects on properties and morphologies of poly(L-lactide). Polymer 36, 2709–2716 (1995). https://doi.org/10.1016/0032-3861(95)93647-5

    Article  CAS  Google Scholar 

  4. Drumright, R.E., Gruber, P.R., Henton, D.E.: Polylactic acid technology. Adv. Mater. 12, 1841–1846 (2000). https://doi.org/10.1002/1521-4095(200012)12:233.0.CO;2-E

    Article  CAS  Google Scholar 

  5. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discovery. 3, 1023–1035 (2004). https://doi.org/10.1038/nrd1576

    Article  CAS  PubMed  Google Scholar 

  6. Valle, E.M.M.D.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  7. Saokham, P., Loftsson, T.: γ-Cyclodextrin. Int. J. Pharm. 516, 278–292 (2017). https://doi.org/10.1016/j.ijpharm.2016.10.062

    Article  CAS  PubMed  Google Scholar 

  8. Gong, L., Li, T.T., Chen, F., Duan, X.W., Yuan, Y.F., Zhang, D.D., Jiang, Y.M.: An inclusion complex of eugenol into β-cyclodextrin: preparation, and physico chemical and antifungal characterization. Food Chem. 196, 324–330 (2016). https://doi.org/10.1016/j.foodchem.2015.09.052

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Soteloa, D., Silva-Espinozaa, B., Perez-Tellob, M., Olivasc, I., Alvarez-Parrillad, E., González-Aguilara, G.A., Ayala-Zavala, J.F.: Antimicrobial activity and thermal stability of rosemary essential oil: β-cyclodextrin capsules applied in tomato juice. LWT Food Sci. Technol. 111, 837–845 (2019). https://doi.org/10.1016/j.lwt.2019.05.061

    Article  CAS  Google Scholar 

  10. Li, Q., Pu, H.Y., Tang, P.X., Tang, B., Sun, Q.M., Li, H.: Propyl gallate/cyclodextrin supramolecular complexes with enhanced solubility and radical scavenging capacity. Food Chem. 245, 1062–1069 (2018). https://doi.org/10.1016/j.foodchem.2017.11.065

    Article  CAS  PubMed  Google Scholar 

  11. Wu, Y.P., Xiao, Y., Yue, Y.X., Zhong, K., Zhao, Y.L., Gao, H.: A deep insight into mechanism for inclusion of 2R, 3R-dihydromyricetin with cyclodextrins and the effect of complexation on antioxidant and lipid-lowering activities. Food Hydrocoll. 103, 105718 (2020). https://doi.org/10.1016/j.foodhyd.2020.105718

    Article  CAS  Google Scholar 

  12. Suvarna, V., Gujar, P., Murahari, M.: Complexation of phytochemicals with cyclodextrin derivatives-An insight. Biomed. Pharmacother. 88, 1122–1144 (2017). https://doi.org/10.1016/j.biopha.2017.01.157

    Article  CAS  PubMed  Google Scholar 

  13. Barbieria, N., Sanchez-Contrerasc, A., Canto, A., Cauich-Rodrigueze, J.V., Vargas-Coronadoe, R., Calvo-Irabiend, L.M.: Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crops Prod. 121, 114–123 (2018). https://doi.org/10.1016/j.indcrop.2018.04.081

    Article  CAS  Google Scholar 

  14. Pellicer, J.A., Fortea, M.I., Trabal, J., Rodríguez-López, M.I., Carazo-Díaz, C., Gabaldón, J.A., Núñez-Delicado, E.: Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray drying. Powder Technol. 338, 591–598 (2018). https://doi.org/10.1016/j.powtec.2018.07.080

    Article  CAS  Google Scholar 

  15. Żyżelewicz, D., Oracz, J., Kaczmarska, M., Budryn, G., Grzelczyk, J.: Preparation and characterization of inclusion complex of (+)-catechin with β-cyclodextrin. Food Res. Int. 113, 263–268 (2018). https://doi.org/10.1016/j.foodres.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  16. Olga, G., Styliani, C., Ioannis, R.G.: Coencapsulation of ferulic and gallic acid in hp-b-cyclodextrin. Food Chem. 185, 33–40 (2015). https://doi.org/10.1016/j.foodchem.2015.03.058

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, Z.Y., Luo, Y., Liu, Y., Wang, X.T., Liu, F., Guo, M.Z., Wang, Z., Liu, A.J., Zhang, Y.M.: Inclusion of chrysin in β-cyclodextrin and its biological activities. J. Drug Delivery Sci. Technol. 31, 176–186 (2016). https://doi.org/10.1016/j.jddst.2016.01.002

    Article  CAS  Google Scholar 

  18. Chen, G., Liu, B.: Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocoll. 55, 100–107 (2016). https://doi.org/10.1016/j.foodhyd.2015.11.009

    Article  CAS  Google Scholar 

  19. Shreaz, S., Bhatia, R., Khan, N., Muralidhar, S., Basir, S.F., Manzoor, N., Khan, L.A.: Exposure of Candida to p-anisaldehyde inhibits its growth and ergosterol biosynthesis. J. Gen. Appl. Microbiol. 57, 129–136 (2011). https://doi.org/10.2323/jgam.57.129

    Article  CAS  PubMed  Google Scholar 

  20. Okamoto, K., Narayama, S., Katsuo, A., Shigematsu, I., Yanase, H.: Biosynthesis of p-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. J. Biosci. Bioeng. 93, 207–210 (2002). https://doi.org/10.1016/S1389-1723(02)80015-9

    Article  CAS  PubMed  Google Scholar 

  21. Chen, X.R., Zhang, X.W., Meng, R.Z., Zhao, Z.W., Liu, Z.H., Zhao, X.C., Shi, C., Guo, N.: Efficacy of a combination of nisin and p-Anisaldehyde against Listeria monocytogenes. Food Control 66, 100–106 (2016). https://doi.org/10.1016/j.foodcont.2016.01.025

    Article  CAS  Google Scholar 

  22. Shi, C., Zhao, X.C., Meng, R.Z., Liu, Z.J., Zhang, G.N., Guo, N.: Synergistic antimicrobial effects of nisin and p-Anisaldehyde on Staphylococcus aureus in pasteurized milk. LWT Food Sci Technol. 84(222), 230 (2017). https://doi.org/10.1016/j.lwt.2017.05.056

    Article  CAS  Google Scholar 

  23. Harish, R., Divakar, S., Srivastava, A., Shivanandappa, T.: Isolation of antioxidant compounds from the methanolic extract of the roots of Decalepis hamiltonii (Wight and Arn.). J. Agric. Food Chem. 53, 7709–7714 (2005). https://doi.org/10.1021/jf051047c

    Article  CAS  PubMed  Google Scholar 

  24. Park, B.S., Lee, K.G., Shibamoto, T., Lee, S.E., Takeoka, G.R.: Antioxidant activity and characterization of volatile constituents of Taheebo (Tabebuia impetiginosa Martius ex DC). J. Agric. Food Chem. 51, 295–300 (2003). https://doi.org/10.1021/jf020811h

    Article  CAS  PubMed  Google Scholar 

  25. Hu, X., Li, N., Heng, T.T., Fang, L., Lu, C.H.: Functionalization of PVDF-based copolymer via photo-induced p-anisaldehyde catalyzed atom transfer radical polymerization. React. Funct. Polym. 150, 104541 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104541

    Article  CAS  Google Scholar 

  26. Ramot, Y., Haim-Zada, M., Domb, A.J., Nyska, A.: Biocompatibility and safety of PLA and its copolymers. Adv. Drug Delivery Rev. 107, 153–162 (2016). https://doi.org/10.1016/j.addr.2016.03.012

    Article  CAS  Google Scholar 

  27. Lai, S.M., Wu, S.H., Lin, G.G., Don, T.M.: Unusual mechanical properties of melt-blended poly(lactic acid)(PLA)/clay nanocomposites. Eur. Polym. J. 52, 193–206 (2014). https://doi.org/10.1016/j.eurpolymj.2013.12.012

    Article  CAS  Google Scholar 

  28. Imakura, H., Yamada, Y., Fukazawa, R.: Packaging film, material for keeping freshness of food and freshness-keeping method. JP Pat. Appl. 1992, 13 (1992)

    Google Scholar 

  29. Wen, P., Zhu, D.H., Feng, K., Liu, F.J., Lou, W.Y., Li, N., Zong, M.H., Wu, H.: Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem. 196, 996–1004 (2016). https://doi.org/10.1016/j.foodchem.2015.10.043

    Article  CAS  PubMed  Google Scholar 

  30. Estrada-Villegas, G.M., Martínez-Hernández, R.C., Morales, J., Olayo, R.: Incorporation of ciprofloxacin/beta cyclodextrin inclusion complex to polylactic acid electrospun fibers and modeling of the release behavior. Rev. Mex. Ing. Quim. 18, 737–747 (2019). https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n2/Estrada

    Article  CAS  Google Scholar 

  31. Chen, J.W., Li, Y.X., Shi, W.Z., Zheng, H., Wang, L., Li, L.: Release of cinnamaldehyde and thymol from PLA/Tilapia fish gelatin-sodium alginate bilayer films to liquid and solid food simulants, and Japanese Sea Bass: a comparative study. Molecules 26, 7140 (2021). https://doi.org/10.3390/molecules26237140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moradi, S., Barati, A., Tonelli, A.E., Hamedi, H.: Chitosan-based hydrogels loading with thyme oil cyclodextrin inclusion compounds: from preparation to characterization. Eur. Polym. J. 122, 109303 (2020). https://doi.org/10.1016/j.eurpolymj.2019.109303

    Article  CAS  Google Scholar 

  33. Xiao, Z.B., Hou, W.J., Kang, Y.X., Niu, Y.W., Kou, X.R.: Encapsulation and sustained release properties of watermelon flavor and its characteristic aroma compounds from γ-cyclodextrin inclusion complexes. Food Hydrocoll. 97, 10520 (2019). https://doi.org/10.1016/j.foodhyd.2019.105202

    Article  CAS  Google Scholar 

  34. Brooijmans, N., Kuntz, I.D.: Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct. 32, 335–373 (2003). https://doi.org/10.1146/annurev.biophys.32.110601.142532

    Article  CAS  PubMed  Google Scholar 

  35. Śledź, P., Caflisch, A.: Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol. 48, 93–102 (2018). https://doi.org/10.1016/j.sbi.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, C.L., Liu, J.C., Yang, W.B., Chen, D.L., Jiao, Z.G.: Experimental and molecular docking investigations on the inclusion mechanism of the complex of phloridzin and hydroxypropyl-β-cyclodextrin. Food Chem. 215, 124–128 (2017). https://doi.org/10.1016/j.foodchem.2016.07.155

    Article  CAS  PubMed  Google Scholar 

  37. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009). https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, J.Q., Geng, S., Wang, Y., Lv, Y.H., Wang, H.B., Liu, B.G., Liang, G.Z.: The interaction mechanism of oligopeptides containing aromatic rings with β-cyclodextrin and its derivatives. Food Chem. 286, 441–448 (2019). https://doi.org/10.1016/j.foodchem.2019.02.021

    Article  CAS  PubMed  Google Scholar 

  39. Sun, L.N., Lu, L.X., Qiu, X.L., Tang, Y.L.: Development of low-density polyethylene antioxidant active films containing α-tocopherol loaded with MCM-41(Mobil Composition of Matter No. 41) mesoporous silica. Food Control 71, 193–199 (2017). https://doi.org/10.1016/j.foodcont.2016.06.025

    Article  CAS  Google Scholar 

  40. Jiang, L.W., Yang, J.D., Wang, Q., Ren, L.L., Zhou, J.: Physicochemical properties of catechin/β-cyclodextrin inclusion complex obtained via co-precipitation. CyTA J. Food. 17, 544–551 (2019). https://doi.org/10.1080/19476337.2019.1612948

    Article  CAS  Google Scholar 

  41. Altun, A., Swesi, O.A.A., Alhatab, B.S.S.: Structural and spectroscopic (UV–Vis, IR, Raman, and NMR) characteristics of anisaldehydes that are flavoring food additives: a density functional study in comparison with experiments. J. Mol. Struct. 1128, 590–605 (2017). https://doi.org/10.1016/j.molstruc.2016.09.035

    Article  CAS  Google Scholar 

  42. Wang, X.G., Luo, Z.G., Xiao, Z.G.: Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr. Polym. 101, 1027–1032 (2014). https://doi.org/10.1016/j.carbpol.2013.10.042

    Article  CAS  PubMed  Google Scholar 

  43. Bensouiki, S., Belaib, F., Sindt, M., Rup-Jacques, S., Magri, P., Ikhlef, A., Meniai, A.H.: Synthesis of cyclodextrins-metronidazole inclusion complexes and incorporation of metronidazole - 2-hydroxypropyl-β-cyclodextrin inclusion complex in chitosan nanoparticles. J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2021.131298

    Article  Google Scholar 

  44. Lin, Y., Huang, R., Sun, X.X., Yu, X., Xiao, Y., Wang, L., Hu, W.Z., Zhong, T.: The p-Anisaldehyde/β-cyclodextrin inclusion complexes as a sustained release agent: characterization, storage stability, antibacterial and antioxidant activity. Food Control 132, 108561 (2022). https://doi.org/10.1016/j.foodcont.2021.108561

    Article  CAS  Google Scholar 

  45. Abarca, R.L., Rodríguez, F.J., Guarda, A., Galotto, M.J., Bruna, J.E.: Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 196, 968–975 (2016). https://doi.org/10.1016/j.foodchem.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  46. Krishnaswamy, K., Orsat, V., Thangavel, K.: Synthesis and characterization of nano-encapsulated catechin by molecular inclusion with beta-cyclodextrin. J. Food Eng. 111, 255–264 (2012). https://doi.org/10.1016/j.jfoodeng.2012.02.024

    Article  CAS  Google Scholar 

  47. Yang, Z.J., Xiao, Z.B., Ji, H.B.: Solid inclusion complex of terpinen-4-ol/ β-cyclodextrin: kinetic release, mechanism and its antibacterial activity. Flavour Fragrance J. 30, 179–187 (2015). https://doi.org/10.1002/ffj.3229

    Article  CAS  Google Scholar 

  48. Cinà, V., Russo, M., Lazzara, G., Martino, D.C., Meo, P.L.: Pre- and post-modification of mixed cyclodextrin-calixarene co-polymers: a route towards tenability. Carbohydr. Polym. 157, 1393–1403 (2017). https://doi.org/10.1016/j.carbpol.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  49. Chen, M., Li, Y.H., Li, Y.G., Li, X.L., Zhao, S.Y., Yang, L.J., Liu, X.Y., Zhang, J.Q.: Molecular dynamics simulations and theoretical calculations of cyclodextrin-polydatin inclusion complexes. J. Mol. Struct. 1230, 129840 (2021). https://doi.org/10.1016/j.molstruc.2020.129840

    Article  CAS  Google Scholar 

  50. Liu, J.Y., Zhang, S.D., Zhao, X.Y., Lu, Y., Song, M., Wu, S.Z.: Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative. J. Mol. Struct. 1254, 132359 (2022). https://doi.org/10.1016/j.molstruc.2022.132359

    Article  CAS  Google Scholar 

  51. Phaechamud, T., Chitrattha, S.: Pore formation mechanism of porous poly(dl-lactic acid) matrix membrane. Mater. Sci. Eng. 61, 744–752 (2016). https://doi.org/10.1016/j.msec.2016.01.014

    Article  CAS  Google Scholar 

  52. Liu, W.L., Yan, C.R., Wei, M., Lei, Y.J., Huang, J.L., Zhang, Y., Zhao, L.M.: Comparison of antibacterial properties of different polylactic acid composite film. Mod. Food Sci. Technol. 36, 175–179 (2020). https://doi.org/10.13982/j.mfst.1673-9078.2020.3.023

    Article  CAS  Google Scholar 

  53. Chun, S., Jeon, G.H., Cho, H.J., Ji, Y.I.: Impact of hysterectomy on ovarian reserve in early postoperative period. Korean J. Obstet. Gynecol. 55, 17–21 (2012). https://doi.org/10.5468/KJOG.2012.55.1.17

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFD0400701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Lu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Lu, L. & Pan, L. Synthesis of p-methoxybenzaldehyde/β-cyclodextrin inclusion complex and studies of its release properties in polylactic acid film. J Incl Phenom Macrocycl Chem 103, 21–34 (2023). https://doi.org/10.1007/s10847-022-01173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01173-y

Keywords

Navigation