Skip to main content

Advertisement

Log in

Inclusion complex of cyclodextrin with ergotamine and evaluation of cyclodextrin-based nanosponges

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Purpose

The anti-migraine drugs show first-pass metabolism, short half-life, and low bioavailability resulting in repeated dose or overdose effect. Polymeric, biodegradable and highly porous nanosponges emerge as a promising carrier for migraine treatment to improve aqueous solubility, stability and bioavailability.

Method

Ergotamine nanosponges prepared by interfacial polymerization method wherein hydroxypropyl beta-cyclodextrin inclusion complex was crosslinked using toluene diisocyanate. Caffeine used as a permeation enhancer for ergotamine by forming soluble molecular complex with cyclodextrin moiety of nanosponges. Further, nanosponges were characterized for particle size, zeta potential, entrapment efficiency, percentage drug release profile, antioxidant activity, photostability and instrumental analytical studies.

Results

Caffeine significantly improved the permeation of ergotamine nanosponges. The particle size for optimized nanosponges was 693.5 ± 11.7 nm, zeta potential of − 19.4 ± 5.69 mV with high colloidal stability and maximum entrapment efficiency of 98.88 ± 2.8%. In-vitro and ex-vivo studies exhibited controlled release profiles of ergotamine 81.6% ± 3.4% and 79% ± 4.2% for 24 h, respectively. Nanosponges demonstrated higher antioxidant activity 85.68% ± 1.23% whereas photostability data showed no significant decrease in drug content indicating good stability. Fourier transform infrared spectroscopy confirmed significant interaction of ergotamine with cyclodextrin-based nanosponges.

Conclusion

Nanosponges showed improvement in bioavailability of ergotamine and long-term stability offering inexpensive, productive and safe alternative for migraine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ET:

Ergotamine tartrate

CD:

Cyclodextrin

HCD:

Hydroxypropyl B-cyclodextrin

NSP:

Nanosponges

CNS:

Central nervous system

5-HT:

5-Hydroxy tryptamine

CGRP:

Calcitonin gene-related peptide

TIN:

Toluene diisocvanate

TEA:

Trimethyl amine

KOH:

Potassium hydroxide

DCM:

Dichloromethane

ET-CD:

Ergotamine-cyclodextrin inclusion

NLC:

Nanostrucrured lipid carriers

SLN:

Solid-lipid nanoparticles

p MDI:

Pressurized metered-dose inhaler

FTIR:

Fourier transform infrared

DSC:

Differential scanning colorimetry

NMR:

Nuclear Magnetic Resonance

SEM:

Scanning electron microscopy

DPPH:

2,2-Dipheny1-1-picrylhydrazyl

PVDF:

Polyvinyl difluoride

References

  1. Lipton, R.B., Bigal, M.E.: Migraine: Epidemiology, impact, and risk factors for progression. Headache 45(S45–S1), 3–13 (2005). https://doi.org/10.1111/j.1526-4610.2005.4501001.x

    Article  Google Scholar 

  2. Erdő, F., Bors, L.A., Farkas, D., Bajza, Á., Gizurarson, S.: Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 143, 155–170 (2018)

    Article  Google Scholar 

  3. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. LiverTox Clin. Res. Inf. Drug-Induced Liver Inj. 2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548405/

  4. Tfelt-Hansen, P., Saxena, P.R., Dahlöf, C., Pascual, J., Láinez, M., Henry, P., et al.: Ergotamine in the acute treatment of migraine. A review and European consensus. Brain 123, 9–18 (2000)

    Article  Google Scholar 

  5. Tfelt-Hansen, P.C.: Triptans and ergot alkaloids in the acute treatment of migraine: similarities and differences. Expert Rev Neurother. 13, 961–963 (2013)

    Article  CAS  Google Scholar 

  6. Hou, M., Xing, H., Cai, Y., Li, B., Wang, X., Li, P., et al.: The effect and safety of monoclonal antibodies to calcitonin gene-related peptide and its receptor on migraine: a systematic review and meta-analysis. J Headache Pain 18, 1–12 (2017)

    Article  Google Scholar 

  7. Antonaci, F., Ghiotto, N., Wu, S., Pucci, E., Costa, A.: Recent advances in migraine therapy. Springerplus 5, 1–14 (2016)

    Article  CAS  Google Scholar 

  8. Arnold, A.C., Ramirez, C.E., Choi, L., Okamoto, L.E., Gamboa, A., Diedrich, A., et al.: Combination ergotamine and caffeine improves seated blood pressure and presyncopal symptoms in autonomic failure. Front Physiol. 5, 1–7 (2014)

    Article  Google Scholar 

  9. Drug Bank. Ergot Alkaloids and Derivatives. 222-5. Available from: https://www.drugbank.ca/categories/DBCAT000606

  10. Hong, S.S., Oh, K.T., Choi, H.G., Lim, S.J.: Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics 11, 1–18 (2019)

    Article  CAS  Google Scholar 

  11. Desai, D., Shende, P.: Experimental aspects of NPY-decorated gold nanoclusters using randomized hybrid design against breast cancer cell line. Biotechnol J. (2020). https://doi.org/10.1002/biot.202100319

    Article  Google Scholar 

  12. Armer, T.A., Shrewsbury, S.B., Newman, S.P., Pitcairn, G., Ramadan, N.: Aerosol delivery of ergotamine tartrate via a breath-synchronized plume-control inhaler in humans. Curr Med Res Opin. 23, 3177–3187 (2007)

    Article  CAS  Google Scholar 

  13. Helm, H., Müller, B.W., Waaler, T.: Complexation of dihydroergotamine mesylate with cyclodextrin derivatives: solubility and stability in aqueous solution. Eur J Pharm Sci. 3, 195–201 (1995)

    Article  CAS  Google Scholar 

  14. Gadade, D.D., Pekamwar, S.S.: Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv Pharm Bull. 10, 166–183 (2020)

    Article  CAS  Google Scholar 

  15. Trotta, F., Zanetti, M., Cavalli, R.: Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem. 8, 2091–2099 (2012)

    Article  CAS  Google Scholar 

  16. Bureau I. PCT. 2012;2.

  17. Saldanha Do Carmo C, Maia C, Poejo J, Lychko I, Gamito P, Nogueira I, et al. Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. R Soc Chem; 2017;7:32065–75.

  18. Selva, P., Srinivasan, V.: Antioxidant activities of ropinirole and pramipexole novel drugs used in treatment of parkinsonism: an in vitro approach. Asian J Pharm Clin Res. 9, 105–107 (2016)

    Article  CAS  Google Scholar 

  19. ICH Q1B. ICH Q1B Photostability Testing of New Active Substances and Medicinal Products. Eur Med Agency [Internet]. 1998;1–9. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002647.pdf

  20. FDA. Guidance for Industry: Q1A(R2) Stability Testing of New Drug Substances and Products, U.S. Department of Health and Human Services, Food and Drug Administration. SubStance. 2003;1–22.

  21. Saokham, P., Muankaew, C., Jansook, P., Loftsson, T.: Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 23, 1–15 (2018)

    Article  Google Scholar 

  22. Prabu, S., Swaminathan, M., Sivakumar, K., Rajamohan, R.: Preparation, characterization and molecular modeling studies of the inclusion complex of Caffeine with Beta-cyclodextrin. J. Mol. Struct. (2015). https://doi.org/10.1016/j.molstruc.2015.07.018

    Article  Google Scholar 

  23. Szmeja S, Gubica T, Ostrowski A, Zalewska A, Szeleszczuk Ł, Zawada K, et al. Caffeine-cyclodextrin complexes as solids: Synthesis, biological and physicochemical characterization. Int J Mol Sci. 2021;22.

  24. Shende, P.K., Gaud, R.S., Bakal, R., Patil, D.: Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf B 136, 105–10 (2015). https://doi.org/10.1016/j.colsurfb.2015.09.002

    Article  CAS  Google Scholar 

  25. Ferrero R, Pantaleone S, Delle Piane M, Caldera F, Corno M, Trotta F, et al. On the interactions of melatonin/β-cyclodextrin inclusion complex: A novel approach combining efficient semiempirical extended tight-binding (xtb) results with ab initio methods. Molecules 2021;26.

  26. Sambasevam, K.P., Mohamad, S., Sarih, N.M., Ismail, N.A.: Synthesis and characterization of the inclusion complex of β-cyclodextrin and azomethine. Int J Mol Sci. 14, 3671–3682 (2013)

    Article  CAS  Google Scholar 

  27. Desai, D., Shende, P.: Drug-free cyclodextrin-based free cyclodextrin-based nanosponges for antimicrobial activity. J Pharm Innov. 16, 258–68 (2021)

    Article  Google Scholar 

  28. Desai D, Shende P. Cyclodextrin-based gefitinib nanobubbles for synergistic apoptosis in lung cancer. Mater Technol [Internet]. Taylor & Francis; 2021;00:1–12. Available from: https://doi.org/10.1080/10667857.2021.1969493

  29. Salazar S, Yutronic N, Kogan MJ, Jara P. Cyclodextrin nanosponges inclusion compounds associated with gold nanoparticles for potential application in the photothermal release of melphalan and cytoxan. Int J Mol Sci. 2021;22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dali, P., Shende, P. Inclusion complex of cyclodextrin with ergotamine and evaluation of cyclodextrin-based nanosponges. J Incl Phenom Macrocycl Chem 102, 669–682 (2022). https://doi.org/10.1007/s10847-022-01149-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-022-01149-y

Keywords

Navigation