Skip to main content
Log in

Donor–acceptor charge transfer assemblies based on naphthalene diimides(NDIs)

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Charge transfer architectures have attracted wide attention due to their advantages of easy probing and higher solvent tolerance, making it possible to construct charge transfer assemblies in a wide range of organic and aqueous media. 1, 4, 5, 8-Naphthalenediimides (NDIs) have been widely used as electron-deficient acceptors to construct charge transfer complexes with a variety of electron-rich donors. In this review, we introduced various supramolecular charge transfer assemblies based on NDIs that have undergone vigorous development in the past decade, including catenanes, rotaxanes, supramolecular polymers and gels. Due to the intrinsic weak nature of aromatic charge transfer interactions, highly organized structures were proved to be a result of multiple cooperative non-covalent interactions in most cases. In this review, we aim to shed light on the future design of NDI-based supramolecular structures and their applications in the real world.

Graphic abstract

We in this review chose three types of NDI based charge transfer structures that have attracted considerably attentions throughout the last 10 years and systematically discussed their design strategies, structures and their characteristic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Rao, C.N.R., Murthy, A.S.N.: Spectroscopy of donor-acceptor systems. Spectrosc. Inorg. Chem. 1, 107–171 (1970)

    Article  CAS  Google Scholar 

  2. Dack, M.R.J.: Charge-transfer complexes and photochemistry. J. Chem. Educ. 50(3), 169–173 (1973)

    Article  CAS  Google Scholar 

  3. Charton, M.: Linear free-energy relationship for acceptor strength in charge-transfer complex formation I Substituted benzene donors. J. Org. Chem. 33(10), 3878–3878 (1968)

    Article  CAS  Google Scholar 

  4. Das, A., Ghosh, S.: Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angew. Chem. Int. Ed. 53(8), 2038–2054 (2014)

    Article  CAS  Google Scholar 

  5. Gao, L., Gao, Y., Lin, Y., Ju, Y., Yang, S., Hu, J.: A charge-transfer-induced self-healing supramolecular hydrogel. Chem. Asian J. 11(23), 3430–3435 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. Rao, K.V., Jalani, K., Jayaramulu, K., Mogera, U., Maji, T.K., George, S.J.: Charge-transfer nanostructures through noncovalent amphiphilic self-assembly: Extended cofacial donor-acceptor arrays. Asian J. Org. Chem. 3(2), 161–169 (2014)

    Article  CAS  Google Scholar 

  7. Park, L.Y., Hamilton, D.G., McGehee, E.A., McMenimen, K.A.: Complementary C3-symmetric donor-acceptor components: cocrystal structure and control of mesophase stability. J. Am. Chem. Soc. 125(35), 10586–10590 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J.-Y., Yan, J., Ding, L., Ma, Y., Pei, J.: One-dimensional microwires formed by the co-assembly of complementary aromatic donors and acceptors. Adv. Funct. Mater. 19(11), 1746–1752 (2009)

    Article  CAS  Google Scholar 

  9. Liang, J., Soucie, L.N., Blechschmidt, D.R., Yoder, A., Gustafson, A., Liu, Y.: Aromatic donor-acceptor interaction-based co(iii)-salen self-assemblies and their applications in asymmetric ring opening of epoxides. Org. Lett. 21(2), 513–518 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Wakchaure, V.C., Pillai, L.V., Goudappagouda, G., Ranjeesh, K.C., Chakrabarty, S., Ravindranathan, S., Rajamohanan, P.R., Babu, S.S.: Charge transfer liquid: a stable donor–acceptor interaction in the solvent-free liquid state. Chem. Commun. 55(63), 9371–9374 (2019)

    Article  CAS  Google Scholar 

  11. Suraru, S.-L., Würthner, F.: Strategies for the synthesis of functional naphthalene diimides. Angew. Chem. Int. Ed. 53(29), 7428–7448 (2014)

    Article  CAS  Google Scholar 

  12. Wurthner, F., Ahmed, S., Thalacker, C., Debaerdemaeker, T.: Core-substituted naphthalene bisimides: new fluorophors with tunable emission wavelength for FRET studies. Chem. Eur. J. 8(20), 4742–4750 (2002)

    Article  CAS  PubMed  Google Scholar 

  13. Yang, J., Xiao, B., Tang, A., Li, J., Wang, X., Zhou, E.: Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv. Mater. 31(45), 1804699–1804705 (2018)

    Article  Google Scholar 

  14. Chen, M., Li, J., Jiao, X., Yang, X., Wu, W., McNeil, R.C., Gao, X.G.: Enantiopure versus racemic naphthalene diimide-based n-type organic semiconductors: effect on charge transport. J. Mater. Chem. C 7(9), 2659–2665 (2019)

    Article  CAS  Google Scholar 

  15. Fang, Y., Tan, J., Lan, T., Foo, S.G.F., Pyun, D.G., Lim, S., Kim, D.-H.: Universal one-pot, one-step synthesis of core-shell nanocomposites with self-assembled tannic acid shell and their antibacterial and catalytic activities. J. Appl. Polym. Sci. 135(6), 45829–45836 (2018)

    Article  Google Scholar 

  16. Deepthi, K., Amal, R.R.B., Rajeev, V.R., Unni, K.N.N., Gowd, E.B.: Directed assembly of hierarchical supramolecular block copolymers: A strategy to create donor-acceptor charge-transfer stacks. Macromolecules 52(7), 2889–2899 (2019)

    Article  CAS  Google Scholar 

  17. Ji, X., Ahmed, M., Long, L., Khashab, N.M., Huang, F., Sessler, J.L.: Adhesive supramolecular polymeric materials constructed from macrocycle-based host-guest interactions. Chem. Soc. Rev. 48(10), 2682–2697 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. Petelski, A.N., Fonseca Guerra, C.: Hydrogen-bonded rosettes of aminotriazines for selective-ion recognition. J. Phys. Chem. C 124(5), 3352–3363 (2019)

    Article  Google Scholar 

  19. Rajdev, P., Molla, M.R., Ghosh, S.: Understanding the role of H-bonding in aqueous self-assembly of two naphthalene diimide (NDI)-conjugated amphiphiles. Langmuir 30(8), 1969–1976 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Shao, H., Nguyen, T., Romano, N.C., Modarelli, D.A., Parquette, J.R.: Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides. J. Am. Chem. Soc. 131(45), 16374–16376 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Sikder, A., Sarkar, J., Sakurai, T., Seki, S., Ghosh, S.: Solvent switchable nanostructures and the function of a pi-amphiphile. Nanoscale 10(7), 3272–3280 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Liu, K., Yao, Y., Liu, Y., Wang, C., Li, Z., Zhang, X.: Self-assembly of supra-amphiphiles based on dual charge-transfer interactions: from nanosheets to nanofibers. Langmuir 28(29), 10697–10702 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. Liu, K., Yao, Y., Wang, C., Liu, Y., Li, Z., Zhang, X.: From bola-amphiphiles to supra-amphiphiles: the transformation from two-dimensional nanosheets into one-dimensional nanofibers with tunable-packing fashion of n-type chromophores. Chem. Eur. J. 18(28), 8622–8628 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Martinez-Martinez, V., Sola Llano, R., Furukawa, S., Takashima, Y., Lopez Arbeloa, I., Kitagawa, S.: Enhanced phosphorescence emission by incorporating aromatic halides into an entangled coordination framework based on naphthalenediimide. ChemPhysChem 15(12), 2517–2521 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Bhat, S.A., Das, C., Maji, T.K.: Metallated azo-naphthalene diimide based redox-active porous organic polymer as an efficient water oxidation electrocatalyst. J. Mater. Chem. A 6(40), 19834–19842 (2018)

    Article  CAS  Google Scholar 

  26. Poddutoori, P.K., Zarrabi, N., Moiseev, A.G., Gumbau-Brisa, R., Vassiliev, S., van der Est, A.: Long-lived charge separation in novel axial donor-porphyrin-acceptor triads based on tetrathiafulvalene, aluminum(III) porphyrin and naphthalenediimide. Chem. Eur. J. 19(9), 3148–3161 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. Khalily, M.A., Bakan, G., Kucukoz, B., Topal, A.E., Karatay, A., Yaglioglu, H.G., Dana, A., Guler, M.O.: Fabrication of supramolecular n/p-nanowires via coassembly of oppositely charged peptide-chromophore systems in aqueous media. ACS Nano 11(7), 6881–6892 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Jeevan, A.K., Gopidas, K.R.: Hierarchical self-assembly of pyrene-linked cyclodextrin and adamantane-linked naphthalene diimide system: a case of inclusion-binding-assisted charge-transfer interaction. ChemistrySelect 4(2), 506–514 (2019)

    Article  CAS  Google Scholar 

  29. Ng, A.W.H., Au-Yeung, H.Y.: Molecular links and knots from naphthalenediimide: a balance of weak interactions. Chem. Asian J. 14(10), 1602–1612 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. Kobaisi, M.A., Bhosale, S.V., Latham, K., Raynor, A.M., Bhosale, S.V.: Functional naphthalene diimides: synthesis, properties, and applications. Chem. Rev. 116(19), 11685–11796 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Z., Zhang, G., Zhang, D.: Modification of side chains of conjugated molecules and polymers for charge mobility enhancement and sensing functionality. Acc. Chem. Res. 51(6), 1422–1432 (2018)

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, Y., Cotelle, Y., Liu, L., Lopez-Andarias, J., Bornhof, A.B., Akamatsu, M., Sakai, N., Matile, S.: The emergence of anion-π catalysis. Acc. Chem. Res. 51(9), 2255–2263 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Shukla, J., Mukhopadhyay, P.: Synthesis of functionalized naphthalene diimides and their redox properties. Eur. J. Org. Chem. 48(48), 7770–7786 (2019)

    Article  Google Scholar 

  34. Raehm, L., Sauvage, J.-P.: Molecular machines and motors based on transition metal-containing catenanes and rotaxanes. Struct. Bond. 99, 55–78 (2001)

    Article  CAS  Google Scholar 

  35. Park, K.M., Heo, J., Roh, S.G., Jeon, Y.M., Whang, D., Kim, K.: Self-assembly of interlocked structures: rotaxanes, polyrotaxanes and molecular necklaces. Mol. Cryst. Liq. Cryst. Sci. Technol. 327(1), 65–70 (2006)

    Article  Google Scholar 

  36. Gibson, H.W., Bheda, M.C., Engen, P.T.: Rotaxanes, catenanes, polyrotaxanes, polycatenanes and related materials. Prog. Polym. Sci. 19(5), 843–845 (1994)

    Article  CAS  Google Scholar 

  37. Chen, J., Leung, F.K.-C., Stuart, M.C.A., Kajitani, T., Fukushima, T., Giessen, E., Feringa, B.L.: Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10(2), 132–138 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. Zhu, K., Baggi, G., Loed, J.S.: Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat. Chem. 10(6), 625–630 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Rodríguez, R., Suárez-Picado, E., Quiñoá, E., Riguera, R., Freire, F.: Self-assembly of interlocked structures: rotaxanes, polyrotaxanes and molecular necklaces. Mol. Cryst. Liq. Cryst. Sci. Technol. 327, 65–70 (1999)

    Article  Google Scholar 

  40. Yang, W., Li, Y., Zhang, J., Chen, N., Chen, S., Liu, H., Li, Y.: Directed synthesis of [2]catenanes incorporating naphthalenediimide and crown ethers by associated interactions of templates. J. Org. Chem. 76(19), 7750–7756 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Au-Yeung, H.Y., Pantoş, G.D., Sanders, J.K.M.: A water soluble donor-acceptor [2]catenane that can switch between a coplanar and a gemini-sign conformation. Angew. Chem. Int. Ed. 49(31), 5331–5334 (2010)

    Article  CAS  Google Scholar 

  42. Au-Yeung, H.Y., Pantoş, G.D., Sanders, J.K.M.: Dynamic combinatorial donor-acceptor catenanes in water: access to unconventional and unexpected structures. J. Org. Chem. 76(5), 1257–1268 (2011)

    Article  CAS  PubMed  Google Scholar 

  43. Cougnon, F.B.L., Au-Yeung, H.Y., Pantoş, G.D., Sanders, J.K.M.: Exploring the formation pathways of donor-acceptor catenanes in aqueous dynamic combinatorial libraries. J. Am. Chem. Soc. 133(9), 3198–3207 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. Cougnon, F.B., Ponnuswamy, N., Jenkins, N.A., Pantos, G.D., Sanders, J.K.: Structural parameters governing the dynamic combinatorial synthesis of catenanes in water. J. Am. Chem. Soc. 134(46), 19129–19135 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Cougnon, F.B., Jenkins, N.A., Pantos, G.D., Sanders, J.K.: Templated dynamic synthesis of a [3]catenane. Angew. Chem. Int. Ed. 51(6), 1443–1447 (2012)

    Article  CAS  Google Scholar 

  46. Dehkordi, M.E., Luxami, V., Pantos, G.D.: High-​yielding synthesis of chiral donor-​acceptor catenanes. J. Org. Chem 83(19), 11654–11660 (2018)

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, Q., Zhang, H.-Y., Han, M., Ding, Z.-J., Liu, Y.: pH-controlled intramolecular charge-transfer behavior in bistable [3]rotaxane. Org. Lett. 12(8), 1728–1731 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Z.-J., Han, M., Zhang, H.-Y., Liu, Y.: A double-leg donor acceptor molecular elevator. Org. Lett. 15(7), 1698–1701 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Dey, S.K., Coskun, A., Fahrenbach, A.C., Barin, G., Basuray, A.N., Trabolsi, A., Botros, Y.Y., Stoddart, J.F.: A redox-active reverse donor–acceptor bistable [2]rotaxane. Chem. Sci. 2(6), 1046–1053 (2011)

    Article  CAS  Google Scholar 

  50. Rouville, H.-P., Iehl, J., Bruns, C.J., McGrier, P.L., Frasconi, M., Sarjeant, A.A., Stoddart, J.F.: A neutral naphthalene diimide [2]rotaxane. Org. Lett. 14(20), 5188–5191 (2012)

    Article  Google Scholar 

  51. Bruns, C.J., Li, J., Frasconi, M., Schneebeli, S.T., Iehl, J., Jacquot de Rouville, H.P., Stupp, S.I., Voth, G.A., Stoddart, J.F.: An electrochemically and thermally switchable donor-acceptor [c2] daisy chain rotaxane. Angew. Chem. Int. Ed. 53(7), 1953–1958 (2014)

    Article  CAS  Google Scholar 

  52. Schrçder, H.V., Hupatz, H., Achazi, A.J., Sobottka, S., Sarkar, B., Paulus, B., Schalley, C.A.: A divalent pentastable redox-switchable donor-acceptor rotaxane. Chem. Eur. J. 23(12), 2960–2967 (2017)

    Article  Google Scholar 

  53. Barendt, T.A., Robinson, S.W., Beer, P.D.: Superior anion induced shuttling behaviour exhibited by a halogen bonding two station rotaxane. Chem. Sci. 7(8), 5171–5180 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barendt, T.A., Docker, A., Marques, I., Felix, V., Beer, P.D.: Selective nitrate recognition by a halogen-bonding four-station [3]rotaxane molecular shuttle. Angew. Chem. Int. Ed. 55(37), 11069–11076 (2016)

    Article  CAS  Google Scholar 

  55. Barendt, T.A., Rasovic, I., Lebedeva, M.A., Farrow, G.A., Auty, A., Chekulaev, D., Sazanovich, I.V., Weinstein, J.A., Porfyrakis, K., Beer, P.D.: Anion-mediated photophysical behavior in a c60 fullerene [3]rotaxane shuttle. J. Am. Chem. Soc. 140(5), 1924–1936 (2018)

    Article  CAS  PubMed  Google Scholar 

  56. Michinobu, T.: Development of N-type semiconducting polymers for transistor applications. J. Photopolym. Sci. Technol. 32(4), 563–570 (2019)

    Article  CAS  Google Scholar 

  57. Jalani, K., Kumar, M., George, S.J.: Mixed donor-acceptor charge-transfer stacks formed via hierarchical self-assembly of a non-covalent amphiphilic foldamer. Chem. Commun. 49(45), 5174–5176 (2013)

    Article  CAS  Google Scholar 

  58. Greenland, B.W., Bird, M.B., Burattini, S., Cramer, R., O’Reilly, R.K., Patterson, J.P., Hayes, W., Cardin, C.J., Colquhoun, H.M.: Mutual binding of polymer end-groups by complementary π–π-stacking: a molecular “Roman Handshake.” Chem. Commun. 49(5), 454–456 (2013)

    Article  CAS  Google Scholar 

  59. Burattini, S., Colquhoun, H.M., Fox, J.D., Friedmann, D., Greenland, B.W., Harris, P.J.F., Hayes, W., Mackayc, M.E., Rowan, S.J.: A self-repairing, supramolecular polymer system: Healability as a consequence of donor–acceptor π–π stacking interactions. Chem. Commun. 45(44), 6717–6719 (2009)

    Article  Google Scholar 

  60. Fox, J., Wie, J.J., Greenland, B.W., Burattini, S., Hayes, W., Colquhoun, H.M., Mackay, M.E., Rowan, S.J.: High-strength, healable, supramolecular polymer nanocomposites. J. Am. Chem. Soc. 134(11), 5362–5368 (2012)

    Article  CAS  PubMed  Google Scholar 

  61. Burattini, S., Greenland, B.W., Merino, D.H., Weng, W., Seppala, J., Colquhoun, H.M., Hayes, W., Mackay, M.E., Hamley, I.W., Rowan, S.J.: A healable supramolecular polymer blend based on aromatic π–π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. Burattini, S., Greenland, B.W., Hayes, W., Mackay, M.E., Rowan, S.J., Colquhoun, H.M.: A supramolecular polymer based on tweezer-type π−π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23(1), 6–8 (2011)

    Article  CAS  Google Scholar 

  63. Hart, L.R., Hunter, J.H., Nguyen, N.A., Harries, J.L., Greenland, B.W., Mackay, M.E., Colquhoun, H.M., Hayes, W.: Multivalency in healable supramolecular polymers: the effect of supramolecular cross-link density on the mechanical properties and healing of non-covalent polymer networks. Polym. Chem. 5(11), 3680–3688 (2014)

    Article  CAS  Google Scholar 

  64. Hart, L.R., Harries, J.L., Greenland, B.W., Colquhoun, H.M., Hayes, W.: Supramolecular approach to new inkjet printing inks. ACS Appl. Mater. Interfaces 7(16), 8906–8914 (2015)

    Article  CAS  PubMed  Google Scholar 

  65. Parker, M.P., Murray, C.A., Hart, L.R., Greenland, B.W., Hayes, W., Cardin, C.J., Colquhoun, H.M.: Mutual complexation between π–π stacked molecular tweezers. Cryst. Growth Des. 18(1), 386–392 (2017)

    Article  Google Scholar 

  66. Narasimha, K.: Macromolecular effect stabilized color-tunable and room temperature charge-transfer complexes based on donor-acceptor assemblies. ACS Appl. Polym. Mater. 2(3), 1145–1159 (2020)

    Article  CAS  Google Scholar 

  67. Draper, E.R., Adams, D.J.: Low molecular weight gels: the state of the art. Chem 3(3), 390–410 (2017)

    Article  CAS  Google Scholar 

  68. Kulkarni, C., Periyasamy, G., Balasubramanian, S., George, S.J.: Charge-transfer complexation between naphthalene diimides and aromatic solvents. Phys. Chem. Chem. Phys. 16(28), 14661–14664 (2014)

    Article  CAS  PubMed  Google Scholar 

  69. Basak, S., Bhattacharya, S., Datta, A., Banerjee, A.: Charge-transfer complex formation in gelation: the role of solvent molecules with different electron-donating capacities. Chem. Eur. J. 20(19), 5721–5726 (2014)

    Article  CAS  PubMed  Google Scholar 

  70. Basak, S., Nandi, N., Baral, A., Banerjee, A.: Tailor-made design of J- or H-aggregated naphthalenediimide-based gels and remarkable fluorescence turn on/off behaviour depending on solvents. Chem. Commun. 51(4), 780–783 (2015)

    Article  CAS  Google Scholar 

  71. Molla, M.R., Das, A., Ghosh, S.: Self-sorted assembly in a mixture of donor and acceptor chromophores. Chem. Eur. J. 16(33), 10084–10093 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. Kar, H., Gehrig, D.W., Laquai, F., Ghosh, S.: J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide. Nanoscale 7(15), 6729–6736 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Das, A., Molla, M.R., Banerjee, A., Paul, A., Ghosh, S.: Hydrogen-bonding directed assembly and gelation of donor-acceptor chromophores: supramolecular reorganization from a charge-transfer state to a self-sorted state. Chem. Eur. J. 17(22), 6061–6066 (2011)

    Article  CAS  PubMed  Google Scholar 

  74. Das, A., Molla, M.R., Maity, B., Koley, D., Ghosh, S.: Hydrogen-bonding induced alternate stacking of donor (d) and acceptor (a) chromophores and their supramolecular switching to segregated states. Chem. Eur. J. 18(32), 9849–9859 (2012)

    Article  CAS  PubMed  Google Scholar 

  75. Bartocci, S., Berrocal, J.A., Guarracino, P., Grillaud, M., Franco, L., Mba, M.: Peptide-driven charge-transfer organogels built from synergetic hydrogen bonding and pyrene-naphthalenediimide donor-acceptor interactions. Chem. Eur. J. 24(12), 2920–2928 (2018)

    Article  CAS  PubMed  Google Scholar 

  76. Parveen, R., Maity, N., Dastidar, P.: Simple organic salts having a naphthalenediimide (NDI) core display multifunctional properties: gelation, anticancer and semiconducting properties. Chem. Asian J. 13(2), 170–180 (2018)

    Article  CAS  PubMed  Google Scholar 

  77. Ali, W., Ning, G., Hassan, M., Gong, W.: Construction of pillar[5]arene tetramer-based cross-linked supramolecular polymers through hierarchical charge-transfer and host-guest interactions. Asian J. Org. Chem. 8(1), 74–78 (2019)

    Article  CAS  Google Scholar 

  78. Liu, G., Yuan, Q., Hollett, G., Zhao, W., Kang, Y., Wu, J.: Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym. Chem. 9(25), 3436–3449 (2018)

    Article  CAS  Google Scholar 

  79. Wichterle, O., Lím, D.: Hydrophilic gels for biological use. Nature 185(4706), 117–118 (1960)

    Article  Google Scholar 

  80. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Y., Xu, H., Zhang, X.: Tuning the amphiphilicity of building blocks: controlled self-assembly and disassembly for functional supramolecular materials. Adv. Mater. 21(28), 2849–2864 (2009)

    Article  CAS  Google Scholar 

  82. Molla, M.R., Ghosh, S.: Hydrogen-bonding-mediated vesicular assembly of functionalized naphthalene-diimide-based bolaamphiphile and guest-induced gelation in water. Chem. Eur. J. 18(32), 9860–9869 (2012)

    Article  CAS  PubMed  Google Scholar 

  83. Bhattacharjee, S., Bhattacharya, S.: Charge transfer induces formation of stimuli-responsive, chiral, cohesive vesicles-on-a-string that eventually turn into a Hydrogel. Chem. Asian J. 10, 572–580 (2015)

    Article  CAS  PubMed  Google Scholar 

  84. Bhattacharjee, S., Maiti, B., Bhattacharya, S.: First report of charge-transfer induced heat-set hydrogel structural insights and remarkable properties. Nanoscale 8(21), 11224–11233 (2016)

    Article  CAS  PubMed  Google Scholar 

  85. Nalluri, S.K.M., Berdugo, C., Javid, N., Frederix, P.W.J.M., Ulijn, R.V.: Biocatalytic self-assembly of supramolecular charge-transfer nanostructures based on n-type semiconductor-appended peptides. Angew. Chem. Int. Ed. 53(23), 5882–5887 (2014)

    Article  CAS  Google Scholar 

  86. Berdugo, C., Nalluri, S.K.M., Javid, N., Escuder, B., Miravet, J.F., Ulijn, R.V.: Dynamic peptide library for the discovery of charge transfer hydrogels. ACS Appl. Mater. Interfaces 7(46), 25946–25954 (2015)

    Article  CAS  PubMed  Google Scholar 

  87. Nelli, S.R., Lin, J.-H., Nguyen, T.N.A., Tseng, D.T.-H., Talloj, S.K., Lin, H.-C.: Influence of amino acid side chains on the formation of two component self-assembling nanofibrous hydrogels. New J. Chem. 41(3), 1229–1234 (2017)

    Article  CAS  Google Scholar 

  88. Nelli, S.R., Chakravarthy, R.D., Mohiuddin, M., Lin, H.-C.: The role of amino acids on supramolecular co-assembly of naphthalenediimide–pyrene based hydrogelators. RSC Adv. 8(27), 14753–14759 (2018)

    Article  CAS  Google Scholar 

  89. Pramanik, B., Ahmed, S., Singha, N., Das, B.K., Dowari, P., Das, D.: Unorthodox combination of cation-π and charge-transfer interactions within a donor-acceptor pair. Langmuir 35(2), 478–488 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (21702153 and 21801194) and Natural Science Foundation of Hubei Province (ZRMS2019000270).

Author information

Authors and Affiliations

Authors

Contributions

XP, LW and SC were involved in all aspects of this work. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Lu Wang or Shigui Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Wang, L. & Chen, S. Donor–acceptor charge transfer assemblies based on naphthalene diimides(NDIs). J Incl Phenom Macrocycl Chem 99, 131–154 (2021). https://doi.org/10.1007/s10847-021-01044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01044-y

Keywords

Navigation