Skip to main content
Log in

Host–guest inclusion systems of nedaplatin with cucurbit[7]uril for improved in vitro antitumour activity

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Encapsulation of platinum-based anticancer drugs inside cucurbit[n]urils provides a steric hindrance to drug degradation. This study describes an alternative strategy for the enhancement of in vitro antitumor activity of nedaplatin (NDP) by encapsulating it in the cavity of cucurbit[7]uril (CB[7]). The complexation stoichiometry, binding affinity and geometry were studied via reliable spectroscopic and physicochemical techniques. The stoichiometry of the inclusion complex was 1:1 and the stability constant (KS) value was found to be (2.89 ± 0.26) × 106 M−1 at 293 K, which suggested a favorable inclusion complexation system has been formed. In vitro cytotoxicity of the free NDP and complexed NDP (NDP@CB[7]) was examined by MTT assay using three human cancer cell lines: A549, HCT116, MCF-7. Interestingly, more cytotoxicity on MCF-7 was observed for NDP@CB[7] as compared with free drugs. In addition, NDP@CB[7] showed significantly improved cytotoxicity against A549 and HCT116 cells with up to almost threefold and twofold higher cytotoxicity than that of free NDP, indicating that the encapsulation of NDP in CB[7] can enhance the cytotoxicity of NDP in tested cancer cell lines. The formed species are shown to be stabilized in solution and the host–guest complexation between NDP and CB[7] may allow this strategy to be effective for potential use in drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shimada, M., Itamochi, H., Kigawa, J.: Nedaplatin: a cisplatin derivative in cancer chemotherapy. Cancer Manag. Res. 5, 67 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fahmy, S.A., et al.: Investigation of the host-guest complexation between 4-sulfocalix [4] arene and nedaplatin for potential use in drug delivery. Spectrochim. Acta Part A 193, 528–536 (2018)

    Article  CAS  Google Scholar 

  3. Alberto, M.E., et al.: The second-generation anticancer drug Nedaplatin: a theoretical investigation on the hydrolysis mechanism. J. Phys. Chem. B 113(43), 14473–14479 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. Koshiyama, M., et al.: Chemosensitivity testing of a novel platinum analog, nedaplatin (254-S), in human gynecological carcinomas: a comparison with cisplatin. Anticancer Res. 25(6C), 4499–4502 (2005)

    CAS  PubMed  Google Scholar 

  5. Inuyama, Y., et al.: An early phase II clinical study of cis-diammine glycolato platinum, 254-S, for head and neck cancers. Cancer Chemother. 19(6), 863–869 (1992)

    CAS  Google Scholar 

  6. He, Y.-F., et al.: A phase II study of paclitaxel and nedaplatin as front-line chemotherapy in Chinese patients with metastatic esophageal squamous cell carcinoma. World J. Gastroenterol. WJG 19(35), 5910 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. Kameyama, Y., et al.: Nephrotoxicity of a new platinum compound, 254-S, evaluated with rat kidney cortical slices. Toxicol. Lett. 52(1), 15–24 (1990)

    Article  CAS  PubMed  Google Scholar 

  8. Ishibashi, T., Yano, Y., Oguma, T.: Population pharmacokinetics of platinum after nedaplatin administration and model validation in adult patients. Br. J. Clin. Pharmacol. 56(2), 205–213 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rabik, C.A., Dolan, M.E.: Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 33(1), 9–23 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Ota, K.: Nedaplatin. Cancer Chemother. 23(3), 379–387 (1996)

    CAS  Google Scholar 

  11. Kawai, Y., et al.: Relationship between cisplatin or nedaplatin-induced nephrotoxicity and renal accumulation. Biol. Pharm. Bull. 28(8), 1385–1388 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Uehara, T., et al.: Nephrotoxicity of a novel antineoplastic platinum complex, nedaplatin: a comparative study with cisplatin in rats. Arch. Toxicol. 79(8), 451–460 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Walker, S., et al.: The potential of cucurbit [n] urils in drug delivery. Israel J. Chem. 51(5–6), 616–624 (2011)

    Article  CAS  Google Scholar 

  14. Lagona, J., et al.: The cucurbit [n] uril family. Angew. Chem. Int. Ed. 44(31), 4844–4870 (2005)

    Article  CAS  Google Scholar 

  15. Buck, D.P., et al.: Inclusion complexes of the antitumour metallocenes Cp2MCl2 (M= Mo, Ti) with cucurbit [n] urils. Dalton Trans. 17, 2328–2334 (2008)

    Article  Google Scholar 

  16. Thangavel, A., et al.: Orientation of pyrylium guests in cucurbituril hosts. J. Org. Chem. 77(5), 2263–2271 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Thuéry, P.: L-Cysteine as a chiral linker in lanthanide-cucurbit [6] uril one-dimensional assemblies. Inorg. Chem. 50(21), 10558–10560 (2011)

    Article  PubMed  Google Scholar 

  18. Lee, D.-W., et al.: Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. Nat. Chem. 3(2), 154 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44(2), 394–418 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Wheate, N.J., et al.: Multi-nuclear platinum complexes encapsulated in cucurbit [n] uril as an approach to reduce toxicity in cancer treatment. Chem. Commun. 12, 1424–1425 (2004)

    Article  Google Scholar 

  21. Wheate, N.J., et al.: Cucurbit [n] uril binding of platinum anticancer complexes. Dalton Trans. 3, 451–458 (2006)

    Article  Google Scholar 

  22. Nojini, Z.B., Yavari, F., Bagherifar, S.: Preference prediction for the stable inclusion complex formation between cucurbit [n= 5–7] urils with anticancer drugs based on platinum (II): computational study. J. Mol. Liq. 166, 53–61 (2012)

    Article  CAS  Google Scholar 

  23. Jansen, K., et al.: Cucurbit [5] uril, decamethylcucurbit [5] uril and cucurbit [6] uril. Synthesis, solubility and amine complex formation. J. Incl. Phenom. Macrocycl. Chem. 39(3–4), 357–363 (2001)

    Article  CAS  Google Scholar 

  24. Zhao, J., et al.: Cucurbit [n] uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. 40(22), 4233–4235 (2001)

    Article  CAS  Google Scholar 

  25. Koner, A.L., et al.: Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit [7] uril. Can. J. Chem. 89(2), 139–147 (2011)

    Article  CAS  Google Scholar 

  26. Ong, W., Gómez-Kaifer, M., Kaifer, A.E.: Cucurbit [7] uril: a very effective host for viologens and their cation radicals. Org. Lett. 4(10), 1791–1794 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Moon, K., Kaifer, A.E.: Modes of binding interaction between viologen guests and the cucurbit [7] uril host. Org. Lett. 6(2), 185–188 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Venkataramanan, N.S., et al.: Theoretical prediction of the complexation behaviors of antitumor platinum drugs with cucurbiturils. J. Phys. Chem. B 116(48), 14029–14039 (2012)

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y., et al.: Supramolecular chemotherapy: cooperative enhancement of antitumor activity by combining controlled release of oxaliplatin and consuming of spermine by cucurbit [7] uril. ACS Appl. Mater. Interfaces 9(10), 8602–8608 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Uzunova, V.D., et al.: Toxicity of cucurbit [7] uril and cucurbit [8] uril: an exploratory in vitro and in vivo study. Org. Biomol. Chem. 8(9), 2037–2042 (2010)

    Article  CAS  Google Scholar 

  31. Hettiarachchi, G., et al.: Toxicology and drug delivery by cucurbit [n] uril type molecular containers. PLoS ONE 5(5), e10514 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Oun, R., Plumb, J.A., Wheate, N.J.: A cisplatin slow-release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit [7] uril, gelatin and polyvinyl alcohol. J. Inorg. Biochem. 134, 100–105 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. Cao, L., et al.: Cucurbit [7] uril containers for targeted delivery of oxaliplatin to cancer cells. Angew. Chem. Int. Ed. 52(46), 12033–12037 (2013)

    Article  CAS  Google Scholar 

  34. Wheate, N.J.: Improving platinum (II)-based anticancer drug delivery using cucurbit [n] urils. J. Inorg. Biochem. 102(12), 2060–2066 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J., et al.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit [n] uril (n= 5, 7, and 8). J. Am. Chem. Soc. 122(3), 540–541 (2000)

    Article  CAS  Google Scholar 

  36. Diederich, F., Stang, P.J., Tykwinski, R.R.: Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis. Wiley, New York (2008)

    Book  Google Scholar 

  37. Gao, C., Linxiang, C.: Nedaplatin and cucurbit[n]uril inclusion compound. Patent CN 107,737,345A. 27 February 2018.

  38. Huang, C.Y.: Determination of binding stoichiometry by the continuous variation method: the job plot. Methods in enzymology, Vol. 87. Academic Press, New York, pp 509–525 (1982).

  39. Barrow, S.J., et al.: Cucurbituril-based molecular recognition. Chem. Rev. 115(22), 12320–12406 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Ali, S.M., Shamim, S.: Analysis of computational models of β-cyclodextrin complexes: structural studies of morniflumate hydrochloride and β-cyclodextrin complex in aqueous solution by quantitative ROESY analysis. J. Incl. Phenom. Macrocycl. Chem. 831–2, 19–26 (2015)

    Article  Google Scholar 

  41. Jahed, V., et al.: NMR (1H, ROESY) spectroscopic and molecular modelling investigations of supramolecular complex of β-cyclodextrin and curcumin. Food Chem. 165, 241–246 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (Nos. 21961017, 21642001, 21662021) and Yunnan Applied Basic Research Projects (Nos. 2018FA047 and 2018FB018), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhu Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, C., Zhong, Y., Zhang, X. et al. Host–guest inclusion systems of nedaplatin with cucurbit[7]uril for improved in vitro antitumour activity. J Incl Phenom Macrocycl Chem 97, 99–107 (2020). https://doi.org/10.1007/s10847-020-00988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-00988-x

Keywords

Navigation