Skip to main content
Log in

Improved oral bioavailability of anticancer drug tamoxifen through complexation with water soluble cyclodextrins: in vitro and in vivo evaluation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Tamoxifen (TMX), a class II antiestrogen drug consistent with the biopharmaceutical classification system, shows low plasma levels leading to therapeutic failure as a result of poor aqueous solubility. Complexation with multifunctional excipients cyclodextrins (CDs) is an effective technique to increase the bioavailability of low water-soluble drugs in oral dosage forms. In this study, solid complexes were obtained with three cyclodextrins (methyl-beta-cyclodextrin (M-β-CD), hydroxypropyl-beta-cyclodextrin (HP-β-CD) and sulfobutyl ether β-cyclodextrin (SBE7-β-CD)) using co-lyophilization or kneading methods. Physicochemical characterization of solid complexes were performed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The obtained results demonstrated that co-lyophilization method comprises stable inclusion complexes between TMX and cyclodextrins. Dissolution study exhibited that aqueous solubility of TMX was significantly enhanced by complexation with methyl-beta-CD. Consequently, tablet formulation using co-lyophilized complex of TMX and M-β-CD (1:1) with drug dose equivalent to 10 mg was prepared by direct compression method. 99% drug was released from the formulation at the end of 30 min. From the comparative results of dissolution study, it was found that the prepared formulation showed better release properties than commercial TMX tablets. Animal studies were performed with tablet formulation of TMX:M-β-CD and commercial tablet formulation administered to Sprague–Dawley rats by oral gavage. Peak concentration (Cmax) of tablet formulation containing TMX/M-β-CD inclusion complex in mice was efficaciously enhanced twofold over commercial tablet. In conclusion, complexation of TMX with M-β-CD gives a more effective tablet formulation with improved dissolution and enhanced oral bioavailability which can be promising for the formulation of tamoxifen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buchanan, C.M., Buchanan, N.L., Edgar, K.J., Little, J.L., Malcolm, M.O., Ruble, K.M., et al.: Pharmacokinetics of tamoxifen after intravenous and oral dosing of tamoxifen-hydroxybutenyl-beta-cyclodextrin formulations. J. Pharm. Sci. 96(3), 644–660 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Park, W.C., Jordan, V.C.: Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention. Trends Mol. Med. 8(2), 82–88 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Jain, S., Heeralal, B., Swami, R., Swarnakar, N.K., Kushwah, V.: Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. AAPS PharmSciTech 19(1), 460–469 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Hard, G.C., Iatropoulos, M.J., Jordan, K., Radi, L., Kaltenberg, O.P., Imondi, A.R., et al.: Major difference in the hepatocarcinogenicity and DNA adduct forming ability between toremifene and tamoxifen in female Crl-Cd(Br) rats. Cancer Res. 53(19), 4534–4541 (1993)

    CAS  PubMed  Google Scholar 

  5. McVie, J.G., Simonetti, G.P., Stevenson, D., Briggs, R.J., Guelen, P.J., de Vos, D.: The bioavailability of Tamoplex (tamoxifen). Part 1. A pilot study. Methods Find. Exp. Clin. Pharmacol. 8(8), 505–512 (1986)

    CAS  PubMed  Google Scholar 

  6. Shin, S.C., Choi, J.S., Li, X.: Enhanced bioavailability of tamoxifen after oral administration of tamoxifen with quercetin in rats. Int. J. Pharm. 313(1–2), 144–149 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Elnaggar, Y.S., El-Massik, M.A., Abdallah, O.Y.: Self-nanoemulsifying drug delivery systems of tamoxifen citrate: design and optimization. Int. J. Pharm. 380(1–2), 133–141 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Layek, B., Mukherjee, B.: Tamoxifen citrate encapsulated sustained release liposomes: preparation and evaluation of physicochemical properties. Sci. Pharm. 78(3), 507–515 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beig, A., Agbaria, R., Dahan, A.: Oral delivery of lipophilic drugs: the tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations. PLoS ONE 8(7), e68237 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shete, H.K., Selkar, N., Vanage, G.R., Patravale, V.B.: Tamoxifen nanostructured lipid carriers: enhanced in vivo antitumor efficacy with reduced adverse drug effects. Int. J. Pharm. 468(1–2), 1–14 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Jena, S.K., Singh, C., Dora, C.P., Suresh, S.: Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int. J. Pharm. 473(1–2), 1–9 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., Onoue, S.: Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int. J. Pharm. 420(1), 1–10 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Desai, S., Poddar, A., Sawant, K.: Formulation of cyclodextrin inclusion complex-based orally disintegrating tablet of eslicarbazepine acetate for improved oral bioavailability. Mater. Sci. Eng. C 58, 826–834 (2016)

    Article  CAS  Google Scholar 

  14. Torne, S., Darandale, S., Vavia, P., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges: effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol. 18(3), 619–625 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Piao, H., Yang, L., Piao, H., Wang, P., Shi, H., Fang, L., et al.: A pre-formulation study of a polymeric solid dispersion of paclitaxel prepared using a quasi-emulsion solvent diffusion method to improve the oral bioavailability in rats. Drug Dev. Ind. Pharm. 42(3), 353–363 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Rumondor, A.C., Dhareshwar, S.S., Kesisoglou, F.: Amorphous solid dispersions or prodrugs: complementary strategies to increase drug absorption. J. Pharm. Sci. 105(9), 2498–2508 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. Junyaprasert, V.B., Morakul, B.: Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J. Pharm. Sci. 10(1), 13–23 (2015)

    Article  Google Scholar 

  18. Dehghani, F., Farhadian, N., Golmohammadzadeh, S., Biriaee, A., Ebrahimi, M., Karimi, M.: Preparation, characterization and in vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur. J. Pharm. Sci. 96, 479–489 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. Chowdhury, N., Vhora, I., Patel, K., Bagde, A., Kutlehria, S., Singh, M.: Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS PharmSciTech 19(2), 792–802 (2018)

    Article  PubMed  CAS  Google Scholar 

  20. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3(12), 1023–1035 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. Shukla, J., Sharma, U., Kar, R., Varma, I.K., Juyal, S., Jagannathan, N.R., et al.: Tamoxifen-2-hydroxylpropyl-beta-cyclodextrin-aggregated nanoassembly for nonbreast estrogen-receptor-positive cancer therapy. Nanomedicine 4(8), 895–902 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Shangguan, L.Q., Chen, Q., Shi, B.B., Huang, F.H.: Enhancing the solubility and bioactivity of anticancer drug tamoxifen by water-soluble pillar[6]arene-based host-guest complexation. Chem. Commun. 53(70), 9749–9752 (2017)

    Article  CAS  Google Scholar 

  23. Loftsson, T., Jarho, P., Masson, M., Jarvinen, T.: Cyclodextrins in drug delivery. Expert Opin. Drug Deliv. 2(2), 335–351 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. Singh, A., Worku, Z.A., Van den Mooter, G.: Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin. Drug Deliv. 8(10), 1361–1378 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Gidwani, B., Vyas, A.: A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Biomed. Res. Int. 2015, 198268 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang, X., Zhang, T., Lan, Y., Wu, B., Shi, Z.: Nanosuspensions containing oridonin/HP-beta-cyclodextrin inclusion complexes for oral bioavailability enhancement via improved dissolution and permeability. AAPS PharmSciTech 17(2), 400–408 (2016)

    Article  PubMed  CAS  Google Scholar 

  27. Yao, Y., Xie, Y., Hong, C., Li, G., Shen, H., Ji, G.: Development of a myricetin/hydroxypropyl-beta-cyclodextrin inclusion complex: preparation, characterization, and evaluation. Carbohydr. Polym. 110, 329–337 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Bilensoy, E., Dogan, L., Sen, M., Hincal, A.: Complexation behavior of antiestrogen drug tamoxifen citrate with natural and modified beta-cyclodextrins. J. Incl. Phenom. Macrocycl. 57(1–4), 651–655 (2007)

    Article  CAS  Google Scholar 

  29. http://ftp.uspbpep.com/v29240/usp29nf24s0_m80440.html

  30. Gjerde, J., Kisanga, E.R., Hauglid, M., Holm, P.I., Mellgren, G., Lien, E.A.: Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1082(1), 6–14 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Patel, H.M., Suhagia, B.N., Shah, S.A., Rathod, I.S., Parmar, V.K.: Preparation and characterization of etoricoxib-beta-cyclodextrin complexes prepared by the kneading method. Acta Pharm. 57(3), 351–359 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Sapkal, N.P., Kilor, V.A., Bhusari, K.P., Daud, A.S.: Evaluation of some methods for preparing gliclazide beta-cyclodextrin inclusion complexes. Trop. J. Pharm. Res. 6(4), 833–840 (2007)

    Article  Google Scholar 

  33. Shaker, D.S., Shaker, M.A., Hanafy, M.S.: Cellular uptake, cytotoxicity and in vivo evaluation of Tamoxifen citrate loaded niosomes. Int. J. Pharm. 493(1–2), 285–294 (2015)

    Article  CAS  PubMed  Google Scholar 

  34. Challa, R., Ahuja, A., Ali, J., Khar, R.K.: Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2), E329–E357 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fenyvesi, E., Szeman, J., Csabai, K., Malanga, M., Szente, L.: Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J. Pharm. Sci. 103(5), 1443–1452 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. Aloisio, C., Longhi, M.: Diloxanide furoate binary complexes with beta-, methyl-beta-, and hydroxypropyl-beta-cyclodextrins: inclusion mode, characterization in solution and in solid state and in vitro dissolution studies. Pharm. Dev. Technol. 23(7), 723–731 (2018)

    Article  CAS  PubMed  Google Scholar 

  37. de Freitas, M.R., Rolim, L.A., Soares, M.F.D., Rolim-Neto, P.J., de Albuquerque, M.M., Soares-Sobrinho, J.L.: Inclusion complex of methyl-beta-cyclodextrin and olanzapine as potential drug delivery system for schizophrenia. Carbohydr. Polym. 89(4), 1095–1100 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Rudrangi, S.R., Trivedi, V., Mitchell, J.C., Wicks, S.R., Alexander, B.D.: Preparation of olanzapine and methyl-beta-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: an approach to enhance the solubility and dissolution properties. Int. J. Pharm. 494(1), 408–416 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. Rudrangi, S.R., Bhomia, R., Trivedi, V., Vine, G.J., Mitchell, J.C., Alexander, B.D., et al.: Influence of the preparation method on the physicochemical properties of indomethacin and methyl-beta-cyclodextrin complexes. Int. J. Pharm. 479(2), 381–390 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Zia, V., Rajewski, R.A., Stella, V.J.: Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7 M-beta-CD to HP-beta-CD. Pharm. Res. 18(5), 667–673 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. Másson, M., Loftsson, T., Jónsdóttir, S., Fridriksdóttir, H., Petersen, D.S.: Stabilisation of ionic drugs through complexation with non-ionic and ionic cyclodextrins. Int. J. Pharm. 164(1–2), 45–55 (1998)

    Article  Google Scholar 

  42. Conceição, J., Adeoye, O., Cabral-Marques, H.M., Lobo, J.M.S.: Cyclodextrins as excipients in tablet formulations. Drug Discov. Today 23(6), 1274–1284 (2018)

    Article  PubMed  CAS  Google Scholar 

  43. Sharma, N., Baldi, A.: Exploring versatile applications of cyclodextrins: an overview. Drug Deliv. 23(3), 739–757 (2016)

    PubMed  Google Scholar 

  44. Marzo, A.: Crossover design in tamoxifen bioequivalence: a borderline situation. J. Pharm. Pharmacol. 50(12), 1433–1434 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. Marzo, A., Fibbioli, M., Marone, C., Cerutti, B.: The degree of predictivity in pilot studies on six subjects in bioequivalence trials. Pharmacol. Res. 49(3), 283–286 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. Adeoye, O., Cabral-Marques, H.: Cyclodextrin nanosystems in oral drug delivery: a mini review. Int. J. Pharm. 531(2), 521–531 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. Irie, T., Uekama, K.: Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J. Pharm. Sci. 86(2), 147–162 (1997)

    Article  CAS  PubMed  Google Scholar 

  48. Calleja, P., Huarte, J., Agueros, M., Ruiz-Gaton, L., Espuelas, S., Irache, J.M.: Molecular buckets: cyclodextrins for oral cancer therapy. Ther. Deliv. 3(1), 43–57 (2012)

    Article  CAS  PubMed  Google Scholar 

  49. Thompson, D.O.: Cyclodextrins—enabling excipients: their present and future use in pharmaceuticals. Crit. Rev. Ther. Drug Carrier Syst. 14(1), 1–104 (1997)

    Article  CAS  PubMed  Google Scholar 

  50. Sajeesh, S., Bouchemal, K., Marsaud, V., Vauthier, C., Sharma, C.P.: Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J. Controll. Release 147(3), 377–384 (2010)

    Article  CAS  Google Scholar 

  51. Boulmedarat, L., Piel, G., Bochot, A., Lesieur, S., Delattre, L., Fattal, E.: Cyclodextrin-mediated drug release from liposomes dispersed within a bioadhesive gel. Pharm. Res. 22(6), 962–971 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Mohammad, N., Malvi, P., Meena, A.S., Singh, S.V., Chaube, B., Vannuruswamy, G., et al.: Cholesterol depletion by methyl-beta-cyclodextrin augments tamoxifen induced cell death by enhancing its uptake in melanoma. Mol. Cancer 13, 204 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Alper B. Iskit has been supported by the Turkish Academy of Sciences, in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-2-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazlı Erdoğar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdoğar, N., Nemutlu, E., İskit, A.B. et al. Improved oral bioavailability of anticancer drug tamoxifen through complexation with water soluble cyclodextrins: in vitro and in vivo evaluation. J Incl Phenom Macrocycl Chem 96, 81–91 (2020). https://doi.org/10.1007/s10847-019-00952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00952-4

Keywords

Navigation