Skip to main content
Log in

Lowering effect of dimethyl-α-cyclodextrin on GM1-ganglioside accumulation in GM1-gangliosidosis model cells and in brain of β-galactosidase-knockout mice

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

GM1-gangliosidosis (GM1G) is caused by a deficiency of β-galactosidase, resulting in the excessive accumulation of GM1-ganglioside (GM1) in lysosomes of cells, particularly in the nerve cells (neurons). There is no treatment available for patients with GM1G. Meanwhile, cyclodextrins (CyDs) are cyclic oligosaccharides, which are widely used in the pharmaceutical field. We previously reported that 2, 6-di-O-methyl-α-CyD (DM-α-CyD) extracted phospholipids from lipid rafts, which are abundant with sphingolipids including GM1. Therefore, in the present study, we investigated the effects of α-CyDs on GM1 levels in GM1G model cells and in brain of GM1G model mice. The interaction of DM-α-CyD with GM1 was stronger than that of 2-hydroxypropyl-α-CyD. Additionally, DM-α-CyD significantly reduced GM1 levels in GM1G model cells at 1 mM for 24 h. Furthermore, DM-α-CyD decreased GM1 levels in brain after an intraventricular administration to GM1G model mice without any significant side effects. These results strongly suggest that DM-α-CyD decreased the accumulation of GM1 in not only GM1G model cells but also GM1G model mice. Collectively, DM-α-CyD may have the potential as a therapeutic drug for GM1G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vellodi, A.: Lysosomal storage disorders. Br. J. Haematol. 128, 413–431 (2005)

    Article  CAS  Google Scholar 

  2. Winchester, B., Vellodi, A., Young, E.: The molecular basis of lysosomal storage diseases and their treatment. Biochem. Soc. Trans. 28, 150–154 (2000)

    Article  CAS  Google Scholar 

  3. Brunetti-Pierri, N., Scaglia, F.: GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol. Genet. Metab. 94, 391–396 (2008)

    Article  CAS  Google Scholar 

  4. Front, S., Biela-Banas, A., Burda, P., Ballhausen, D., Higaki, K., Caciotti, A., Morrone, A., Charollais-Thoenig, J., Gallienne, E., Demotz, S., Martin, O.R.: (5aR)-5a-C-Pentyl-4-epi-isofagomine: a powerful inhibitor of lysosomal beta-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. Eur. J. Med. Chem. 126, 160–170 (2017)

    Article  CAS  Google Scholar 

  5. Takai, T., Higaki, K., Aguilar-Moncayo, M., Mena-Barragan, T., Hirano, Y., Yura, K., Yu, L., Ninomiya, H., Garcia-Moreno, M.I., Sakakibara, Y., Ohno, K., Nanba, E., Ortiz Mellet, O., Garcia Fernandez, J.M., Suzuki, Y.: A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Mol. Ther. 21, 526–532 (2013)

    Article  CAS  Google Scholar 

  6. Tapmura, A., Higaki, K., Ninomiya, H., Takai, T., Matsuda, J., Iida, M., Ohno, K., Suzuki, Y., Nanba, E.: Lysosomal accumulation of Trk protein in brain of GM1-gangliosidosis mouse and its restoration by chemical chaperone. J. Neurochem. 118, 399–406 (2011)

    Article  Google Scholar 

  7. Suzuki, Y., Ichinomiya, S., Kurosawa, M., Ohkubo, M., Watanabe, H., Iwasaki, H., Matsuda, J., Noguchi, Y., Takimoto, K., Itoh, M., Tabe, M., Iida, M., Kubo, T., Ogawa, S., Nanba, E., Higaki, K., Ohno, K., Brady, R.O.: Chemical chaperone therapy: clinical effect in murine GM1-gangliosidosis. Ann. Neurol. 62, 671–675 (2007)

    Article  CAS  Google Scholar 

  8. Condori, J., Acosta, W., Ayala, J., Katta, V., Flory, A., Martin, R., Radin, J., Cramer, C.L., Radin, D.N.: Enzyme replacement for GM1-gangliosidosis: uptake, LYSOSOMAL activation, and cellular disease correction using a novel β-galactosidase: RTB lectin fusion. Mol. Genet. Metab. 117, 199–209 (2016)

    Article  CAS  Google Scholar 

  9. Samoylova, T.I., Martin, D.R., Morrison, N.E., Hwang, M., Cochran, A.M., Samoylov, A.M., Baker, H.J., Cox, N.R.: Generation and characterization of recombinant feline β-galactosidase for preclinical enzyme replacement therapy studies in GM1 gangliosidosis. Metab. Brain Dis. 23, 161–173 (2008)

    Article  CAS  Google Scholar 

  10. Hayward, C., Patel, H.C., Manohar, S.G., Lyon, A.R.: Gene therapy for GM1 gangliosidosis: challenges of translational medicine. Ann. Transl. Med. 3, S28 (2015)

    PubMed  PubMed Central  Google Scholar 

  11. Weismann, C.M., Ferreira, J., Keeler, A.M., Su, Q., Qui, L., Shaffer, S.A., Xu, Z., Gao, G., Sena-Esteves, M.: Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum. Mol. Genet. 24, 4353–4364 (2015)

    Article  CAS  Google Scholar 

  12. Baek, R.C., Broekman, M.L., Leroy, S.G., Tierney, L.A., Sandberg, M.A., d’Azzo, A., Seyfried, T.N., Sena-Esteves, M.: AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PloS ONE 5, e13468 (2010)

    Article  Google Scholar 

  13. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85, 1017–1025 (1996)

    Article  CAS  Google Scholar 

  14. Rajewski, R.A., Stella, V.J.: Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. J. Pharm. Sci. 85, 1142–1169 (1996)

    Article  CAS  Google Scholar 

  15. Uekama, K.: Design and evaluation of cyclodextrin-based drug formulation. Chem. Pharm. Bull. 52, 900–915 (2004)

    Article  CAS  Google Scholar 

  16. Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)

    Article  CAS  Google Scholar 

  17. Motoyama, K., Toyodome, H., Onodera, R., Irie, T., Hirayama, F., Uekama, K., Arima, H.: Involvement of lipid rafts of rabbit red blood cells in morphological changes induced by methylated β-cyclodextrins. Biol Pharm Bull 32, 700–705 (2009)

    Article  CAS  Google Scholar 

  18. Motoyama, K., Arima, H., Toyodome, H., Irie, T., Hirayama, F., Uekama, K.: Effect of 2,6-di-O-methyl-α-cyclodextrin on hemolysis and morphological change in rabbit’s red blood cells. Eur. J. Pharm. Sci. 29, 111–119 (2006)

    Article  CAS  Google Scholar 

  19. Darblade, B., Caillaud, D., Poirot, M., Fouque, M., Thiers, J.C., Rami, J., Bayard, F., Arnal, J.F.: Alteration of plasmalemmal caveolae mimics endothelial dysfunction observed in atheromatous rabbit aorta. Cardiovasc. Res. 50, 566–576 (2001)

    Article  CAS  Google Scholar 

  20. Parpal, S., Karlsson, M., Thorn, H., Stralfors, P.: Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J. Biol. Chem. 276, 9670–9678 (2001)

    Article  CAS  Google Scholar 

  21. Tanaka, Y., Yamada, Y., Ishitsuka, Y., Matsuo, M., Shiraishi, K., Wada, K., Uchio, Y., Kondo, Y., Takeo, T., Nakagata, N., Higashi, T., Motoyama, K., Arima, H., Mochinaga, S., Higaki, K., Ohno, K., Irie, T.: Efficacy of 2-hydroxypropyl-β-cyclodextrin in Niemann-Pick disease type C model mice and its pharmacokinetic analysis in a patient with the disease. Biol. Pharm. Bull. 38, 844–851 (2015)

    Article  CAS  Google Scholar 

  22. Liu, B., Turley, S.D., Burns, D.K., Miller, A.M., Repa, J.J., Dietschy, J.M.: Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1 –/– mouse. Proc. Natl. Acad. Sci. USA 106, 2377–2382 (2009)

    Article  CAS  Google Scholar 

  23. Camargo, F., Erickson, R.P., Garver, W.S., Hossain, G.S., Carbone, P.N., Heidenreich, R.A., Blanchard, J.: Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci. 70, 131–142 (2001)

    Article  CAS  Google Scholar 

  24. Maeda, Y., Motoyama, K., Higashi, T., Horikoshi, Y., Takeo, T., Nakagata, N., Kurauchi, Y., Katsuki, H., Ishitsuka, Y., Kondo, Y., Irie, T., Furuya, H., Era, T., Arima, H.: Effects of cyclodextrins on GM1-gangliosides in fibroblasts from GM1-gangliosidosis patients. J. Pharm. Pharmacol. 67, 1133–1142 (2015)

    Article  CAS  Google Scholar 

  25. Yan, Y., Shin, S., Jha, B.S., Liu, Q., Sheng, J., Li, F., Zhan, M., Davis, J., Bharti, K., Zeng, X., Rao, M., Malik, N., Vemuri, M.C.: Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl. Med. 2, 862–870 (2013)

    Article  CAS  Google Scholar 

  26. Matsuda, J., Suzuki, O., Oshima, A., Ogura, A., Noguchi, Y., Yamamoto, Y., Asano, T., Takimoto, K., Sukegawa, K., Suzuki, Y., Naiki, M.: β-Galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj. J. 14, 729–736 (1997)

    Article  CAS  Google Scholar 

  27. Nabi, I.R., Le, P.U.: Caveolae/raft-dependent endocytosis. J. Cell Biol. 161, 673–677 (2003)

    Article  CAS  Google Scholar 

  28. Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (1997)

    Article  CAS  Google Scholar 

  29. Neufeld, E.B., Wastney, M., Patel, S., Suresh, S., Cooney, A.M., Dwyer, N.K., Roff, C.F., Ohno, K., Morris, J.A., Carstea, E.D., Incardona, J.P., Strauss, J.F. 3rd, Vanier, M.T., Patterson, M.C., Brady, R.O., Pentchev, P.G., Blanchette-Mackie, E.J.: The Niemann-Pick C1 protein resides in a vesicular compartment linked to retrograde transport of multiple lysosomal cargo. J. Biol. Chem. 274, 9627–9635 (1999)

    Article  CAS  Google Scholar 

  30. Higgins, M.E., Davies, J.P., Chen, F.W., Ioannou, Y.A.: Niemann-Pick C1 is a late endosome-resident protein that transiently associates with lysosomes and the trans-Golgi network. Mol. Genet. Metab. 68, 1–13 (1999)

    Article  CAS  Google Scholar 

  31. Fantur, K., Hofer, D., Schitter, G., Steiner, A.J., Pabst, B.M., Wrodnigg, T.M., Stutz, A.E., Paschke, E.: DLHex-DGJ, a novel derivative of 1-deoxygalactonojirimycin with pharmacological chaperone activity in human GM1-gangliosidosis fibroblasts. Mol. Genet. Metab. 100, 262–268 (2010)

    Article  CAS  Google Scholar 

  32. Rosenbaum, A.I., Zhang, G., Warren, J.D., Maxfield, F.R.: Endocytosis of β-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells. Proc. Natl. Acad. Sci. USA 107, 5477–5482 (2010)

    Article  Google Scholar 

  33. Takamura, A., Higaki, K., Kajimaki, K., Otsuka, S., Ninomiya, H., Matsuda, J., Ohno, K., Suzuki, Y., Nanba, E.: Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem. Biophys. Res. Commun. 367, 616–622 (2008)

    Article  CAS  Google Scholar 

  34. Sano, R., Annunziata, I., Patterson, A., Moshiach, S., Gomero, E., Opferman, J., Forte, M., d’Azzo, A.: GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca2+-dependent mitochondrial apoptosis. Mol. Cell 36, 500–511 (2009)

    Article  CAS  Google Scholar 

  35. Ottinger, E.A., Kao, M.L., Carrillo-Carrasco, N., Yanjanin, N., Shankar, R.K., Janssen, M., Brewster, M., Scott, I., Xu, X., Cradock, J., Terse, P., Dehdashti, S.J., Marugan, J., Zheng, W., Portilla, L., Hubbs, A., Pavan, W.J., Heiss, J., Vite, C.H., Walkley, S.U., Ory, D.S., Silber, S.A., Porter, F.D., Austin, C.P., McKew, J.C.: Collaborative development of 2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann-Pick type C1 disease. Curr. Top. Med. Chem. 14, 330–339 (2014)

    Article  CAS  Google Scholar 

  36. Aqul, A., Liu, B., Ramirez, C.M., Pieper, A.A., Estill, S.J., Burns, D.K., Liu, B., Repa, J.J., Turley, S.D., Dietschy, J.M.: Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J. Neurosci. 31, 9404–9413 (2011)

    Article  CAS  Google Scholar 

  37. Davidson, C.D., Ali, N.F., Micsenyi, M.C., Stephney, G., Renault, S., Dobrenis, K., Ory, D.S., Vanier, M.T., Walkley, S.U.: Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PloS ONE 4, e6951 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for JSPS Research Fellow (16J11970) and Health and Labor Sciences Research Grant in Japan (17bk01040015h0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Arima.

Ethics declarations

Conflict of interest

There is no conflict of interest in this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2018_835_MOESM1_ESM.pptx

Supplementary Figure S1 TUNEL analysis of brain after intraventricular injection of DM-α-CyD to WT mice. Twenty four h after intraventricular injection of 1 μL of solution containing 431.6 mM DM-α-CyD to WT mice, the brain was collected and 7 μm sequential coronal sections were prepared. TUNEL assay was performed by using the Apoptosis in Situ Detection Kit. The images were representative data of 3 experiments. (PPTX 65 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, Y., Motoyama, K., Higashi, T. et al. Lowering effect of dimethyl-α-cyclodextrin on GM1-ganglioside accumulation in GM1-gangliosidosis model cells and in brain of β-galactosidase-knockout mice. J Incl Phenom Macrocycl Chem 93, 53–66 (2019). https://doi.org/10.1007/s10847-018-0835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0835-8

Keywords

Navigation