Skip to main content
Log in

Host–guest interactions between hemicucurbiturils and a hydroxyl-substituted Schiff base

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

The host–guest interactions of hemicucurbit[6 and 12]urils with the Schiff base guest 1 has been investigated. 1H NMR spectra suggest hemicucurbit[6 and 12]urils bind to guest 1 with the formation of hydrogen bondings between the phenol hydroxyl group and carbonyl groups in the host. The formation of interaction complexes are also supported by fluorescence emission spectroscopy. The moderate association constants of the interaction complexes in a ratio of 1:1 are obtained to be (3.2 ± 0.6) × 105 and (5.5 ± 0.8) × 105 L mol−1, respectively, via non-linear curve fitting, which indicate that the formation of hydrogen bondings are important in the host–guest interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ghale, G., Nau, W.M.: Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc. Chem. Res. 47, 2150–2159 (2014)

    Article  CAS  Google Scholar 

  2. Canevet, D., Gallego, M., Isla, H., de Juan, A., Perez, E.M., Martin, N.: Macrocyclic hosts for fullerenes: extreme changes in binding abilities with small structural variations. J. Am. Chem. Soc. 133, 3184–3190 (2011)

    Article  CAS  Google Scholar 

  3. Liu, X., Weinert, Z.J., Sharafi, M., Liao, C., Li, J., Schneebeli, S.T.: Regulating molecular recognition with C-shaped strips attained by chirality-assisted synthesis. Angew. Chem. Int. Ed. 54, 12772–12776 (2015)

    Article  CAS  Google Scholar 

  4. Chen, H., Fan, J., Hu, X., Ma, J., Wang, S., Li, J., Yu, Y., Jia, X., Li, C.: Biphen[n]arenes. Chem. Sci. 6, 197–202 (2015)

    Article  Google Scholar 

  5. Behrend, R., Meyer, E., Rusche, F.: Over condensation products from glycoluril and formaldehyde. [machine translation]. Liebigs Ann. Chem. 339, 1 (1905)

    Article  Google Scholar 

  6. Mock, W.L., Shih, N.Y.: Host–guest binding capacity of cucurbituril. Org. Chem. 48, 3618 (1983)

    Article  CAS  Google Scholar 

  7. Cong, H., Ni, X.L., Xiao, X., Huang, Y., Zhu, Q.J., Xue, S.F., Tao, Z., Lindoy, L.F., Wei, G.: Synthesis and separation of cucurbit[n]urils and their derivatives. Org. Biomol. Chem. 14, 4335–4364 (2016)

    Article  CAS  Google Scholar 

  8. Miyahara, Y., Goto, K., Oka, M., Inazu, T.: Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. Angew. Chem. Int. Ed. 43, 5019–5022 (2004)

    Article  CAS  Google Scholar 

  9. Svec, J., Necas, M., Sindelar, V.: Bambus[6]uril. Angew. Chem. Int. Ed. 49, 2378–2381 (2010)

    Article  CAS  Google Scholar 

  10. Yawer, M.A., Havel, V., Sindelar, V.: A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew. Chem. Int. Ed. 54, 276–279 (2015)

    Article  CAS  Google Scholar 

  11. Li, Y., Li, L., Zhu, Y., Meng, X., Wu, A.: Solvent effect on pseudopolymorphism of hemicyclohexylcucurbit[6]uril. Cryst. Growth Des. 9, 4255–4257 (2009)

    Article  CAS  Google Scholar 

  12. Prigorchenko, E., Öeren, M., Kaabel, S., Fomitšenko, M., Reile, I., Järving, I., Tamm, T., Topić, F., Rissanenc, K., Aav, R.: Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril. Chem. Commun. 51, 10921–10924 (2015)

    Article  CAS  Google Scholar 

  13. Lisbjerg, M., Jessen, B.M., Rasmussen, B., Nielsen, B.E., Madsen, A.Ø., Pittelkow, M.: Discovery of a cyclic 6 + 6 hexamer of d-biotin and formaldehyde. Chem. Sci. 5, 2647–2650 (2014)

    Article  CAS  Google Scholar 

  14. Lisbjerg, M., Nielsen, B.E., Milhøj, B.O., Sauer, S.P.-A., Pittelkow, M.: Anion binding by biotin[6]uril in water. Org. Biomol. Chem. 13, 369–373 (2015)

    Article  CAS  Google Scholar 

  15. Fiala, T., Sindelar, V.: Synthesis of norbornahemicucurbiturils. Synlett 24, 2443–2445 (2013)

    Article  CAS  Google Scholar 

  16. Aav, R., Shmatova, E., Reile, I., Borissova, M., Topić, F., Rissanen, K.: New chiral cyclohexylhemicucurbit[6]uril. Org. Lett. 15, 3786–3789 (2013)

    Article  CAS  Google Scholar 

  17. Cong, H., Yamato, T., Feng, X., Tao, Z.: Supramolecular catalysis of esterification by hemicucurbiturils under mild conditions. J. Mol. Catal. A: Chem. 365, 181–185 (2012)

    Article  CAS  Google Scholar 

  18. Cong, H., Yamato, T., Tao, Z.: Chemo-selective oxidation of hydroxybenzyl alcohols with IBX in the presence of hemicucurbit[6]uril. New J. Chem. 37, 3778–3783 (2013)

    Article  CAS  Google Scholar 

  19. Cong, H., Yamato, T., Tao, Z.: Hemicucurbit[6]uril-induced aerobic oxidation of heterocyclic compounds. J. Mol. Catal. A: Chem. 379, 287–293 (2013)

    Article  CAS  Google Scholar 

  20. Lisbjerg, M., Valkenier, H., Jessen, B.M., Al-Kerdi, H., Davis, A.P., Pittelkow, M.: Biotin[6]uril esters: chloride-selective transmembrane anion carriers employing C–H… anion interactions. J. Am. Chem. Soc. 137, 4948–4951 (2015)

    Article  CAS  Google Scholar 

  21. Zabierowski, P., Szklarzewicz, J., Kurpiewska, K., Lewinski, K., Nitek, W.: Assemblies of substituted salicylidene-2-ethanolamine copper(II) complexes: from square planar monomeric to octahedral polymeric halogen analogues. Polyhedron 49, 74–83 (2013)

    Article  CAS  Google Scholar 

  22. Guptak, C., Sutar, A.K.: Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 252, 1420–1450 (2008)

    Article  Google Scholar 

  23. Nayak, S., Aromí, G., Teat, S.J., Ribas-Ariño, J., Gamez, P., Reedijk, J.: Hydrogen bond assisted co-crystallization of a bimetallic Mn(III)2Ni(II)2 cluster and a Ni(II)2 cluster unit: synthesis, structure, spectroscopy and magnetism. Dalton Trans. 39, 4986–4990 (2010)

    Article  CAS  Google Scholar 

  24. Badwaik, V.B., Deshmukh, R.D., Aswar, A.S.: Transition metal complexes of a Schiff base: synthesis, characterization, and antibacterial studies. J. Coord. Chem. 62, 2037–2047 (2009)

    Article  CAS  Google Scholar 

  25. Bunzli, J.C.-G., Piguet, C.: Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. Chem. Rev. 102, 1897–1928 (2002)

    Article  Google Scholar 

  26. Cay, S., Kose, M., Tumer, F., Golcu, A., Tumer, M.: SOD activity and DNA binding properties of a new symmetric porphyrin Schiff base ligand and its metal complexes. Spectrochim. Acta A 151, 821–838 (2015)

    Article  CAS  Google Scholar 

  27. Köse, M., Ceyhan, G., Tümer, M., Demirtas, I., Gönül, I., McKee, V.: Monodentate Schiff base ligands: their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties. Spectrochim. Acta A 137, 477 (2015)

    Article  Google Scholar 

  28. Xiang, D.D., Geng, Q.X., Cong, H., Tao, Z., Yamato, T.: Host–guest interaction of hemicucurbiturils with phenazine hydrochloride salt. Supramol. Chem. 27, 37–43 (2015)

    Article  CAS  Google Scholar 

  29. Jiménez-Sánchez, A., Farfán, N., Santillan, R.: Multiresponsive photo-, solvato-, acido-, and ionochromic Schiff base probe. J. Phys. Chem. C 119, 13814–13826 (2015)

    Article  Google Scholar 

  30. Naik, A.D., Fontaine, G., Bellayer, S., Bourbigot, S.: Crossing the traditional boundaries: salen-based Schiff bases for thermal protective applications. ACS Appl. Mater. Interfaces. 7, 21208–21217 (2015)

    Article  CAS  Google Scholar 

  31. Li, S.Y., Wang, X.B., Kong, L.Y.: Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease. Eur. J. Med. Chem. 71, 36–45 (2014)

    Article  CAS  Google Scholar 

  32. Lokhande, P.D., Raheem, A., Sabale, S.T., Chabukswar, A.R., Jageale, S.C.: An efficient synthesis of 1-H indazoles. Tetrahedron Lett. 48, 6890–6892 (2007)

    Article  CAS  Google Scholar 

  33. Bartholomaeus, P., Toma, G., Oliver, K.C.: Continuous flow reduction of artemisinic acid utilizing multi-injection strategies—closing the gap towards a fully continuous synthesis of antimalarial drugs. Chem. A Eur. J. 21, 4368–4376 (2015)

    Article  Google Scholar 

  34. Thordarson, P.: Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of National Natural Science Foundation of China (No. 21662007), the Project of Talent Introduction of Guizhou University (No. (2014)24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Cong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, XY., Wang, F., Cong, H. et al. Host–guest interactions between hemicucurbiturils and a hydroxyl-substituted Schiff base. J Incl Phenom Macrocycl Chem 86, 249–254 (2016). https://doi.org/10.1007/s10847-016-0659-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0659-3

Keywords

Navigation