Skip to main content
Log in

Preclinical pharmacokinetics comparison between resveratrol 2-hydroxypropyl-β-cyclodextrin complex and resveratrol suspension after oral administration

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Trans-Resveratrol (RV) is a natural polyphenol characterized by interesting pleiotropic potentials and health benefits, but its administration is hampered by a unsatisfactory pharmacokinetics. Various approaches have been identified to circumvent it: among them, 2-hydroxypropyl-β-cyclodextrins (HPβCD) are valuable strategy. Here, we compare the employment of HPβCD based formulation with a resveratrol nanosupension (obtained by diluting a RV ethanol solution with PBS, added of 0.05 % hydroxyethylcellulose) to improve RV bioavailability after oral administration to mice. The inclusion of RV in HPβCD was confirmed by differential scanning calorimetry, Fourier transformed infrared spectroscopy, and phase solubility study. The two formulations were orally administered to BALB-c mice. RV concentrations in plasma and tissues were detected at different time (0–120 min) by HPLC method. HPβCD complexation mediate a approximately fourfold increment in plasma RV Cmax and  approximately twofold augment of RV AUC0-120 in comparison with RV nanosuspension. Similar increased concentrations were observed in heart, liver, kidney and gut. In particular, HPβCD mediated a 5.5-folds increase of resveratrol concentration in the intestine, in comparison to the nanosuspension. In conclusion, based on our results, HPβCD complexation is a promising approach to increase the oral bioavailability of RV. Moreover, the achievement of high concentrations in gut suggested a potential employment of oral RV-HPβCD as anti-inflammatory/chemopreventive agent in this tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chabner, B.A., Roberts Jr., T.G.: Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5(1), 65–72 (2005). doi:10.1038/nrc1529

    Article  CAS  Google Scholar 

  2. Lettieri Barbato, D., Tatulli, G., Aquilano, K., Ciriolo, M.R.: Inhibition of Age-Related Cytokines Production by ATGL: a Mechanism Linked to the Anti-Inflammatory Effect of Resveratrol. Mediators Inflamm. 2014, 917698 (2014). doi:10.1155/2014/917698

    Article  Google Scholar 

  3. Udenigwe, C.C., Ramprasath, V.R., Aluko, R.E., Jones, P.J.: Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev. 66(8), 445–454 (2008). doi:10.1111/j.1753-4887.2008.00076.x

    Article  Google Scholar 

  4. Francioso, A., Mastromarino, P., Masci, A., d’Erme, M., Mosca, L.: Chemistry, stability and bioavailability of resveratrol. Med. Chem. 10(3), 237–245 (2014). doi:10.2174/15734064113096660053

    Article  Google Scholar 

  5. Liang, L., Liu, X., Wang, Q., Cheng, S., Zhang, S., Zhang, M.: Pharmacokinetics, tissue distribution and excretion study of resveratrol and its prodrug 3, 5, 4′-tri-O-acetylresveratrol in rats. Phytomedicine 20(6), 558–563 (2013). doi:10.1016/j.phymed.2012.12.012

    Article  CAS  Google Scholar 

  6. Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E., Walle, U.K.: High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 32(12), 1377–1382 (2004). doi:10.1124/dmd.104.000885

    Article  CAS  Google Scholar 

  7. Carter, L.G., D’Orazio, J.A., Pearson, K.J.: Resveratrol and cancer: focus on in vivo evidence. Endocr. Relat. Cancer 21(3), R209–R225 (2014). doi:10.1530/ERC-13-0171

    Article  CAS  Google Scholar 

  8. Basavaraj, S., Betageri, G.V.: Improved oral delivery of resveratrol using proliposomal formulation: investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opin. Drug Deliv. 11(4), 493–503 (2014). doi:10.1517/17425247.2014.878701

    Article  CAS  Google Scholar 

  9. Bonechi, C., Martini, S., Ciani, L., Lamponi, S., Rebmann, H., Rossi, C., Ristori, S.: Using liposomes as carriers for polyphenolic compounds: the case of trans-resveratrol. PLoS ONE 7(8), e41438 (2012). doi:10.1371/journal.pone.0041438

    Article  CAS  Google Scholar 

  10. Neves, A.R., Lúcio, M., Martins, S., Lima, J., Reis, S.: Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomed. 8, 177–187 (2012). doi:10.2147/IJN.S37840

    CAS  Google Scholar 

  11. Mangolim, C.S., Moriwaki, C., Nogueira, A.C., Sato, F., Baesso, M.L., Neto, A.M., Matioli, G.: Curcumin–β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 153, 361–370 (2014). doi:10.1016/j.foodchem.2013.12.067

    Article  CAS  Google Scholar 

  12. Zhang, Q.F., Nie, H.-C., Shangguang, X.-C., Yin, Z.-P., Zheng, G.-D., Chen, J.-G.: Aqueous solubility and stability enhancement of astilbin through complexation with cyclodextrins. J. Agric. Food Chem. 61(1), 151–156 (2012). doi:10.1021/jf304398v

    Article  Google Scholar 

  13. Lu, Z., Cheng, B., Hu, Y., Zhang, Y., Zou, G.: Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem. 113(1), 17–20 (2009). doi:10.1016/j.foodchem.2008.04.042

    Article  CAS  Google Scholar 

  14. Sapino, S., Carlotti, M.E., Caron, G., Ugazio, E., Cavalli, R.: In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 63(1–2), 171–180 (2009). doi:10.1007/s10847-008-9504-7

    Article  CAS  Google Scholar 

  15. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv Anal Chem Instrum 4, 117–212 (1965)

    CAS  Google Scholar 

  16. Takaoka, M.J.: Of the phenolic substances of white hellebore (Veratrum grandiflorum Loes. Fil.). J. Faculty Sci. Hokkaido Imperial University 3:1–16 (1940)

  17. Siemann, E.H., Creasy, L.L.: Concentration of the phytoalexin resveratrol in wine. Am J Eno Vitic 43, 49–52 (1992)

    CAS  Google Scholar 

  18. Baur, J.A., Sinclair, D.A.: Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discovery 5(6), 493–506 (2006). doi:10.1038/nrd2060

    Article  CAS  Google Scholar 

  19. Pervaiz, S., Holme, A.L.: Resveratrol: its biologic targets and functional activity. Antioxid. Redox Signal. 11(11), 2851–2897 (2009). doi:10.1089/ARS.2008.2412

    Article  CAS  Google Scholar 

  20. Jang, M., Cai, L., Udeani, G.O., Slowing, K.V., Thomas, C.F., Beecher, C.W., Fong, H.H., Farnsworth, N.R., Kinghorn, A.D., Mehta, R.G., Moon, R.C., Pezzuto, J.M.: Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297), 218–220 (1997). doi:10.1126/science.275.5297.218

    Article  CAS  Google Scholar 

  21. Fontecave, M., Lepoivre, M., Elleingand, E., Gerez, C., Guittet, O.: Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett. 421(3), 277–279 (1998). doi:10.1016/S0014-5793(97)01572-X

    Article  CAS  Google Scholar 

  22. Sun, N.J., Woo, S.H., Cassady, J.M., Snapka, R.M.: DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J. Nat. Prod. 61(3), 362–366 (1998). doi:10.1021/np970488q

    Article  CAS  Google Scholar 

  23. Ragione, F.D., Cucciolla, V., Borriello, A., Pietra, V.D., Racioppi, L., Soldati, G., Manna, C., Galletti, P., Zappia, V.: Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem. Biophys. Res. commun. 250(1), 53–58 (1998). doi:10.1006/bbrc.1998.9263

    Article  CAS  Google Scholar 

  24. Schneider, Y., Vincent, F., Duranton, B., Badolo, L., Gosse, F., Bergmann, C., Seiler, N., Raul, F.: Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells. Cancer Lett. 158(1), 85–91 (2000). doi:10.1016/S0304-3835(00)00511-5

    Article  CAS  Google Scholar 

  25. Sheth, S., Jajoo, S., Kaur, T., Mukherjea, D., Sheehan, K., Rybak, L.P., Ramkumar, V.: Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PLoS One 7(12), e51655 (2012). doi:10.1371/journal.pone.0051655

    Article  CAS  Google Scholar 

  26. Manna, S.K., Mukhopadhyay, A., Aggarwal, B.B.: Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immun 164(12), 6509–6519 (2000). doi:10.4049/jimmunol.164.12.6509

    Article  CAS  Google Scholar 

  27. Li, T., Wang, W., Chen, H., Li, T., Ye, L.: Evaluation of anti-leukemia effect of resveratrol by modulating STAT3 signaling. Int. Immunopharmacol. 10(1), 18–25 (2010). doi:10.1016/j.intimp.2009.09.009

    Article  CAS  Google Scholar 

  28. Amri, A., Chaumeil, J.C., Sfar, S., Charrueau, C.: Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158(2), 182–193 (2012). doi:10.1016/j.jconrel.2011.09.083

    Article  CAS  Google Scholar 

  29. Boocock, D.J., Faust, G.E., Patel, K.R., Schinas, A.M., Brown, V.A., Ducharme, M.P., Booth, T.D., Crowell, J.A., Perloff, M., Gescher, A.J.: Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol. Biomark. Prev. 16(6), 1246–1252 (2007). doi:10.1158/1055-9965.EPI-07-0022

    Article  CAS  Google Scholar 

  30. Soleas, G.J., Angelini, M., Grass, L., Diamandis, E.P., Goldberg, D.M.: Absorption of trans-resveratrol in rats. Methods Enzymol. 335, 145–154 (2001). doi:10.1016/S0076-6879(01)35239-4

    Article  CAS  Google Scholar 

  31. Athar, M., Back, J.H., Tang, X., Kim, K.H., Kopelovich, L., Bickers, D.R., Kim, A.L.: Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 224(3), 274–283 (2007). doi:10.1016/j.taap.2006.12.025

    Article  CAS  Google Scholar 

  32. Walle, T.: Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. USA 1215(1), 9–15 (2011). doi:10.1111/j.1749-6632.2010.05842.x

    Article  CAS  Google Scholar 

  33. Burkon, A., Somoza, V.: Quantification of free and protein-bound trans-resveratrol metabolites and identification of trans-resveratrol-C/O-conjugated diglucuronides—two novel resveratrol metabolites in human plasma. Mol. Nutr. Food Res. 52(5), 549–557 (2008). doi:10.1002/mnfr.200700290

    Article  CAS  Google Scholar 

  34. Loftsson, T., Vogensen, S.B., Brewster, M.E., Konradsdottir, F.: Effects of cyclodextrins on drug delivery through biological membranes. J. Pharm. Sci. 96(10), 2532–2546 (2007). doi:10.1002/jps.20992

    Article  CAS  Google Scholar 

  35. Berta, G.N., Salamone, P., Sprio, A.E., Di Scipio, F., Marinos, L.M., Sapino, S., Carlotti, M.E., Cavalli, R., Di Carlo, F.: Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch by topical application of resveratrol complexed with 2-hydroxypropyl-beta-cyclodextrin. Oral Oncol. 46(1), 42–48 (2010). doi:10.1016/j.oraloncology.2009.10.007

    Article  CAS  Google Scholar 

  36. Das, S., Lin, H.S., Ho, P.C., Ng, K.Y.: The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm. Res. 25(11), 2593–2600 (2008). doi:10.1007/s11095-008-9677-1

    Article  CAS  Google Scholar 

  37. Duarte, A., Martinho, A., Luís, Â., Figueiras, A., Oleastro, M., Domingues, F.C., Silva, F.: Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. LWT Food Sci. Technol. 63(2), 1254–1260 (2015). doi:10.1016/j.lwt.2015.04.004

    Article  CAS  Google Scholar 

  38. Lopez-Nicolas, J.M., Rodriguez-Bonilla, P., Garcia-Carmona, F.: Cyclodextrins and antioxidants. Crit. Rev. Food Sci. Nutr. 54(2), 251–276 (2014). doi:10.1080/10408398.2011.582544

    Article  CAS  Google Scholar 

  39. Lucas-Abellan, C., Mercader-Ros, M.T., Zafrilla, M.P., Gabaldon, J.A., Nunez-Delicado, E.: Comparative study of different methods to measure antioxidant activity of resveratrol in the presence of cyclodextrins. Food Chem. Toxicol. 49(6), 1255–1260 (2011). doi:10.1016/j.fct.2011.03.004

    Article  CAS  Google Scholar 

  40. Gould, S., Scott, R.C.: 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem. Toxicol. 43(10), 1451–1459 (2005). doi:10.1016/j.fct.2005.03.007

    Article  CAS  Google Scholar 

  41. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004). doi:10.1016/S0032-9592(03)00258-9

    Article  Google Scholar 

  42. Cottart, C.H., Nivet-Antoine, V., Laguillier-Morizot, C., Beaudeux, J.L.: Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res. 54(1), 7–16 (2010). doi:10.1002/mnfr.200900437

    Article  CAS  Google Scholar 

  43. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 63(9), 1119–1135 (2011). doi:10.1111/j.2042-7158.2011.01279.x

    Article  CAS  Google Scholar 

  44. Juan, M.E., Maijo, M., Planas, J.M.: Quantification of trans-resveratrol and its metabolites in rat plasma and tissues by HPLC. J. Pharm. Biomed. Anal. 51(2), 391–398 (2010). doi:10.1016/j.jpba.2009.03.026

    Article  CAS  Google Scholar 

  45. Jose, S., Anju, S.S., Cinu, T.A., Aleykutty, N.A., Thomas, S., Souto, E.B.: In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm. 474(1–2), 6–13 (2014). doi:10.1016/j.ijpharm.2014.08.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by private grants generously funded by “Ordre International des Anysetiers, Commanderie du Piemont”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni N. Berta.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Roberta Cavalli and Giovanni N. Berta have contributed equally at this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Argenziano, M., Salamone, P. et al. Preclinical pharmacokinetics comparison between resveratrol 2-hydroxypropyl-β-cyclodextrin complex and resveratrol suspension after oral administration. J Incl Phenom Macrocycl Chem 86, 263–271 (2016). https://doi.org/10.1007/s10847-016-0657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0657-5

Keywords

Navigation