Skip to main content
Log in

Physicochemical characterizations of safranal-β-cyclodextrin inclusion complexes prepared by supercritical carbon dioxide and conventional methods

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, inclusion complexes of safranal with β-cyclodextrin (β-CD) were prepared using supercritical carbon dioxide (SC-CO2) as well as kneading (KN), co-evaporation, and sealed heating conventional methods. Prepared complexes were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction, scanning electron microscopy and proton nuclear magnetic resonance (1H-NMR) spectroscopy. Effect of preparation method on the yield of inclusion complexes was also investigated. The SC-CO2 method was found to be the most effective preparation technique with the advantage of not using organic solvents. Effects of temperature and pressure on the properties of complexes prepared by SC-CO2 were also investigated. FT-IR and 1H-NMR results confirmed the formation of safranal-β-CD inclusion complexes prepared using all the above mentioned preparation techniques. Phase solubility and dissolution measurements revealed a ‘‘Bs’’ type solubility with an apparent stability constant (Ks) of 39.69 M−1. Initial aqueous solubility of safranal was enhanced by about 35 % upon complex formation with β-CD. Studies on dissolution rate showed a faster dissolution rate of inclusion complexes compared to pure safranal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Melnyk, J.P., Wang, S., Marcone, M.F.: Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43, 1981–1989 (2010)

    Article  CAS  Google Scholar 

  2. Caballero-Ortega, H., Pereda-Miranda, R., Abdullaev, F.I.: HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 100, 1126–1131 (2007)

    Article  CAS  Google Scholar 

  3. Rezaee, R., Hosseinzadeh, H.: Safranal: from an aromatic natural product to a rewarding pharmacological agent. Iranian J. Basic Med. Sci. 15, 1–15 (2012)

    Google Scholar 

  4. Hariri, A.T., Moallem, S.A., Mahmoudi, M., Memar, B., Hosseinzadeh, H.: Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: Protective effects of crocin and safranal. Food Chem. Toxicol. 48, 2803–2808 (2010)

    Article  CAS  Google Scholar 

  5. Hariri, A.T., Moallem, S.A., Mahmoudi, M., Hosseinzadeh, H.: The effect of crocin and safranal, constituents of saffron, against subacute effect of diazinon on hematological and genotoxicity indices in rats. Phytomedicine 18, 499–504 (2011)

    Article  CAS  Google Scholar 

  6. Kanakis, C.D., Tarantilis, P.A., Tajimir-Riahi, H.A., Polissiou, M.G.: Crocetin, dimethylcrocetin, and safranal bind human serum albumin: Srability and antoxidative properties. J. Agr. Food Chem. 55, 970–977 (2007)

    Article  CAS  Google Scholar 

  7. Abdullaev, F.I., Riverón-Negrete, L., Caballero-Ortega, H., Manuel Hernández, J., Pérez-López, I., Pereda-Miranda, R.: Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus L.). Toxicol. Vitro 17, 731–736 (2003)

    Article  CAS  Google Scholar 

  8. Escribano, J., Alonso, G.-L., Coca-Prados, M., Fernández, J.-A.: Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 100, 23–30 (1996)

    Article  CAS  Google Scholar 

  9. Waksmundzka-Hajnos, M., Sherma, J.: High Performance Liquid Chromatography in Phytochemical Analysis, USA. CRC Press, Boca Raton (2011)

    Google Scholar 

  10. Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  11. Uekama, K., Hirayama, F., Camille, G.W.: Improvement of Drug Properties by Cyclodextrins The Practice of Medicinal Chemistry, 2nd edn. Academic Press, London (2003)

    Google Scholar 

  12. Uekama, K., Hirayama, F., Camille, G.W.: The Practice of Medicinal Chemistry, 3rd edn. Academic Press, New York (2008)

    Google Scholar 

  13. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliver. Rev 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  14. Al-Marzouqi, A., Solieman, A., Shehadi, I., Adem, A.: Influence of the preparation method on the physicochemical properties of econazol-B-cyclodxtrin complexes. Incl. Phenom. Macrocycl. Chem. 60, 85–93 (2007)

    Article  Google Scholar 

  15. Al-Marzouqi, A.H., Jobe, B., Dowaidar, A., Maestrelli, F., Mura, P.: Evaluation of supercritical fluid technology as preparative technique of benzocaine–cyclodextrin complexes—Comparison with conventional methods. J. Pharmaceut. Biomed. 43, 566–574 (2007)

    Article  CAS  Google Scholar 

  16. Al-Marzouqi, A.H., Elwy, H.M., Shehadi, I., Adem, A.: Physicochemical properties of antifungal drug–cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Pharmaceut. Biomed. 49, 227–233 (2009)

    Article  CAS  Google Scholar 

  17. Moribe, K., Tozuka, Y., Yamamoto, K.: Supercritical carbon dioxide processing of active pharmaceutical ingredients for polymorphic control and for complex formation. Adv. Drug Deliver. Rev. 60, 328–338 (2008)

    Article  CAS  Google Scholar 

  18. Al-Marzouqi, A.H., Shehatta, I., Jobe, B., Dowaidar, A.: Phase Solubility and Inclusion Complex of Itraconazol with Beta-Cyclodextrin using Supercritical Carbon Dioxide. J. Pham. Sci. 95, 292–304 (2006)

    Article  CAS  Google Scholar 

  19. Waleczek, K.J., Marques, H.M.C., Hempel, B., Schmidt, P.C.: Phase solubility studies of pure (−)-α-bisabolol and camomile essential oil with β-cyclodextrin. Eur. J. Pharm. Biopharm. 55, 247–251 (2003)

    Article  CAS  Google Scholar 

  20. Tommasini, S., Raneri, D., Ficarra, R., Calabrò, M.L., Stancanelli, R., Ficarra, P.: Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin. J. Pharmaceut. Biomed. 35, 379–387 (2004)

    Article  CAS  Google Scholar 

  21. Hassan, H.A., Al-Marzouqi, A.H., Jobe, B., Hamza, A.A., Ramadan, G.A.: Enhancement of dissolution amount and in vivo bioavailability of itraconazole by complexation with β-cyclodextrin using supercritical carbon dioxide. J. Pharmaceut. Biomed. 45, 243–250 (2007)

    Article  CAS  Google Scholar 

  22. Özkan, Y., Atay, T., Dikmen, N., Işimer, A., Aboul-Enein, H.Y.: Improvement of water solubility and in vitro dissolution rate of gliclazide by complexation with β-cyclodextrin. Pharm. Acta Helv. 74, 365–370 (2000)

    Article  Google Scholar 

  23. Banchero, M., Manna, L.: Investigation of the piroxicam/hydroxypropyl-β-cyclodextrin inclusion complexation by means of a supercritical solvent in the presence of auxiliary agents. J. Supercrit. Fluid. 57, 259–266 (2011)

    Article  CAS  Google Scholar 

  24. Sauceau, M., Rodier, E., Fages, J.: Preparation of inclusion complex of piroxicam with cyclodextrin by using supercritical carbon dioxide. J. Supercrit. Fluid 47, 326–332 (2008)

    Article  CAS  Google Scholar 

  25. Lozano, P., Delgado, D., Gómez, D., Rubio, M., Iborra, J.L.: A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J. Biochem. Bioph. Meth. 43, 367–378 (2000)

    Article  CAS  Google Scholar 

  26. Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instr. 4, 117–212 (1965)

    CAS  Google Scholar 

  27. Tang, B., Chen, Z.-Z., Zhang, N., Wang, Y.: Synthesis and characterization of a novel cross-linking complex of β-cyclodextrin-o-vanilin furfaralhydrazone and highly selective spectrofluorimetric determination of trace gallium. Talanta 68, 575–580 (2006)

    Article  CAS  Google Scholar 

  28. Khan, G.M., Wazir, F., Zhu, J.B.: Ibuprofen β-cyclodextrin inclusion complexes: evaluation of different complexation methods. Sciences 1, 193–199 (2001)

    Google Scholar 

  29. Sanghavi, N.M., Choudhari, K.B., Matharu, R.S., Viswanathan, L.: Inclusion complexation of lorazepam with β-cyclodextrin. Drug Dev. Ind. Pharm. 19, 701–7012 (1993)

    Article  CAS  Google Scholar 

  30. Vormans, H., Eisson, A.C., Coenraad, F.L.: Mechanism of dissolution of drug-cyclodextrin complexes. Drug Dev. Ind. Pharm. 15, 250–255 (1988)

    Google Scholar 

  31. Hamdi, H., Abderrahim, R., Meganem, F.: Spectroscopic studies of inclusion complex of β-cyclodextrin and benzidine diammonium dipicrate, Spectrochimica Acta Part A: Molecu. Biomolecul. Spectrosco. 75, 32–36 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Sheikh Hamdan Bin Rashid Al Maktoum Award for Medical Sciences for the financial support of this project under grant # MRG-54/2011-2012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali H. Al-Marzouqi or Alaa A. Salem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadegan, S., Al-Marzouqi, A.H., Salem, A.A. et al. Physicochemical characterizations of safranal-β-cyclodextrin inclusion complexes prepared by supercritical carbon dioxide and conventional methods. J Incl Phenom Macrocycl Chem 83, 215–226 (2015). https://doi.org/10.1007/s10847-015-0555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0555-2

Keywords

Navigation