Skip to main content
Log in

Self assembled macrobicycle and tricycle cages containing pyrrole rings by dynamic covalent chemistry method

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Synthesis of discrete macrobicycle and oligocycle molecules with three dimensional cavities in high yields remains very important because of their potential applications in the area of molecular recognition. Dynamic covalent chemistry method has effectively been used to synthesize such molecules. The Schiff base condensation reaction between tris(α-formylpyrrolyl-α′-methyl)amine and ethylenediamine readily afforded the large size [2 + 3] macrobicycle in very high yield. The analogous reaction between this trialdehyde and tris(2-aminoethyl)amine gave the [2 + 2] macrotricycle Schiff base in good yield. Subsequent reduction reactions using sodium borohydride yielded the corresponding saturated products in good yields. The anion binding ability of the [2 + 3] saturated macrobicycle was explained through the X-ray structure of the chloride anion encapsulated complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Chart 1

Similar content being viewed by others

References

  1. Kang, S.O., Llinares, J.M., Day, V.W., Bowman-James, K.: Cryptand-like anion receptors. Chem. Soc. Rev. 39, 3980–4003 (2010)

    Article  CAS  Google Scholar 

  2. Ballester, P.: Anion binding in covalent and self-assembled molecular capsules. Chem. Soc. Rev. 39, 3810–3830 (2010)

    Article  CAS  Google Scholar 

  3. Mastalerz, M.: Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010)

    Article  CAS  Google Scholar 

  4. Rue, N.M., Sun, J., Warmuth, R.: Polyimine container molecules and nanocapsules. Isr. J. Chem. 51, 743–768 (2011)

    Article  CAS  Google Scholar 

  5. Mastalerz, M.: Permanent porous materials from discrete organic molecules—towards ultra-high surface areas. Chem. Eur. J. 18, 10082–10091 (2012)

    Article  CAS  Google Scholar 

  6. Zhang, G., Mastalerz, M.: Organic cage compounds—from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014)

    Article  CAS  Google Scholar 

  7. Jin, Y., Wang, Q., Taynton, P., Zhang, W.: Dynamic covalent chemistry approaches toward macrocycles, molecular cages, and polymers. Acc. Chem. Res. 47, 1575–1586 (2014)

    Article  CAS  Google Scholar 

  8. Huang, S.L., Jin, G.X., Luo, H.K., Hor, T.S.A.: Engineering organic macrocycles and cages: versatile bonding approaches. Chem. Asian J. 10, 24–42 (2015)

    Article  CAS  Google Scholar 

  9. Barwell, N.P., Crump, M.P., Davies, A.P.: A synthetic lectin for β-glucosyl. Angew. Chem. Int. Ed. 48, 7673–7676 (2009)

    Article  CAS  Google Scholar 

  10. Kubik, S.: Synthetic lectins. Angew. Chem. Int. Ed. 48, 1722–1725 (2009)

    Article  CAS  Google Scholar 

  11. Vögtle, F., Müller, W.M., Werner, U., Losensky, H.W.: Selective molecular recognition and separation of isomeric and partially hydrogenated arenes. Angew. Chem. Int. Ed. 26, 901–903 (1987)

    Article  Google Scholar 

  12. Jazwinski, J., Lehn, J.M., Lilienbaum, D., Ziessel, R., Guilhem, J., Pascard, C.: Polyaza macrobicyclic cryptands: synthesis, crystal structures of a cyclophane type macrobicyclic cryptand and of its dinuclear copper(I) cryptate, and anion binding features. J. Chem. Soc. Chem. Commun. 22, 1691–1694 (1987)

    Article  Google Scholar 

  13. Bisson, A.P., Lynch, V.M., Monahan, M.K.C., Anslyn, E.V.: Recognition of anions through NH-π hydrogen bonds in a bicyclic cyclophane—selectivity for nitrate. Angew. Chem. Int. Ed. 36, 2340–2342 (1997)

    Article  CAS  Google Scholar 

  14. Mason, S., Clifford, T., Seib, L., Kuczera, K., Bowman-James, K.: Unusual encapsulation of two nitrates in a single bicyclic cage. J. Am. Chem. Soc. 120, 8899–8900 (1998)

    Article  CAS  Google Scholar 

  15. Bucher, C., Zimmerman, R.S., Lynch, V., Sessler, J.L.: First cryptand-like calixpyrrole: synthesis, X-ray structure, and anion binding properties of a bicyclic[3,3,3]nonapyrrole. J. Am. Chem. Soc. 123, 9716–9717 (2001)

    Article  CAS  Google Scholar 

  16. Bucher, C., Zimmerman, R.S., Lynch, V., Sessler, J.L.: Synthesis and X-ray structure of a three dimensional calixphyrin. Chem. Commun. 14, 1646–1647 (2003)

    Article  Google Scholar 

  17. Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., Taglietti, A.: A dimetallic cage with a long ellipsoidal cavity for the fluorescent detection of dicarboxylate anions in water. Angew. Chem. Int. Ed. 43, 3847–3852 (2004)

    Article  CAS  Google Scholar 

  18. Setsune, J.I., Watanabe, K.: Cryptand-like porphyrinoid assembled with three dipyrrylpyridine chains: synthesis, structure, and homotropic positive allosteric binding of carboxylic acids. J. Am. Chem. Soc. 130, 2404–2405 (2008)

    Article  CAS  Google Scholar 

  19. Cafeo, G., Colquhoun, H.M., Cuzzola, A., Gattuso, M., Kohnke, F.H., Valenti, L., White, A.J.P.: Synthesis, X-ray structure, and anion-binding properties of a cryptand-like hybrid calixpyrrole. J. Org. Chem. 75, 6263–6266 (2010)

    Article  CAS  Google Scholar 

  20. Kang, S.O., Day, V.W., Bowman-James, K.: Tricyclic host for linear anions. Inorg. Chem. 49, 8629–8636 (2010)

    Article  CAS  Google Scholar 

  21. Tozawa, T., Jones, J.T.A., Swamy, S.I., Jiang, S., Adams, D.J., Shakespeare, S., Clowes, R., Bradshaw, R.D., Hasell, T., Chong, S.Y., Tang, C., Thompson, S., Parker, J., Trewin, A., Bacsa, J., Slawin, A.M.Z., Steiner, A., Cooper, A.I.: Porous organic cages. Nat. Mater. 8, 973–978 (2009)

    Article  CAS  Google Scholar 

  22. Hasell, T., Chong, S.Y., Jelfs, K.E., Adams, D.J., Cooper, A.I.: Porous organic cage nanocrystals by solution mixing. J. Am. Chem. Soc. 134, 588–598 (2012)

    Article  CAS  Google Scholar 

  23. Schneider, M.W., Oppel, I.M., Griffin, A., Mastalerz, M.: Post-modification of the interior of porous shape-persistent organic cage compounds. Angew. Chem. Int. Ed. 52, 3611–3615 (2013)

    Article  CAS  Google Scholar 

  24. Avellaneda, A., Valente, P., Burgun, A., Evans, J.D., Markwell-Heys, A.W., Rankine, D., Nielsen, D.J., Hill, M.R., Sumby, C.J., Doonan, C.J.: Kinetically controlled porosity in a robust organic cage material. Angew. Chem. Int. Ed. 52, 3746–3749 (2013)

    Article  CAS  Google Scholar 

  25. Mitra, T., Jelfs, K.E., Schmidtmann, M., Ahmed, A., Chong, S.Y., Adams, D.J., Cooper, A.I.: Molecular shape sorting using molecular organic cages. Nat. Chem. 5, 276–281 (2013)

    Article  CAS  Google Scholar 

  26. Bushell, A.F., Budd, P.M., Attfield, M.P., Jones, J.T.A., Hasell, T., Cooper, A.I., Bernardo, P., Bazzarelli, F., Clarizia, G., Jansen, J.C.: Nanoporous organic polymer/cage composite membranes. Angew. Chem. Int. Ed. 52, 1253–1256 (2013)

    Article  CAS  Google Scholar 

  27. Brutschy, M., Schneider, M.W., Mastalerz, M., Waldvogel, S.R.: Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv. Mater. 24, 6049–6052 (2012)

    Article  CAS  Google Scholar 

  28. Brutschy, M., Schneider, M.W., Mastalerz, M., Waldvogel, S.R.: Direct gravimetric sensing of GBL by a molecular recognition process in organic cage compounds. Chem. Commun. 49, 8398–8400 (2013)

    Article  CAS  Google Scholar 

  29. Lehn, J.M.: Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999)

    Article  CAS  Google Scholar 

  30. Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M., Stoddart, J.F.: Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002)

    Article  Google Scholar 

  31. Corbett, P.T., Leclaire, J., Vial, L., West, K.R., Wietor, J.L., Sanders, J.K.M., Otto, S.: Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006)

    Article  CAS  Google Scholar 

  32. Liu, X., Liu, Y., Li, G., Warmuth, R.: One-pot, 18-component synthesis of an octahedral nanocontainer molecule. Angew. Chem. Int. Ed. 45, 901–904 (2006)

    Article  CAS  Google Scholar 

  33. Liu, X., Warmuth, R.: Solvent effects in thermodynamically controlled multicomponent nanocage syntheses. J. Am. Chem. Soc. 128, 14120–14127 (2006)

    Article  CAS  Google Scholar 

  34. Liu, X., Liu, Y., Warmuth, R.: Multi-component synthesis of tetracavitand nanocapsules. Supramol. Chem. 20, 41–50 (2008)

    Article  Google Scholar 

  35. Mastalerz, M.: One-pot synthesis of a shape-persistent endo-functionalised nano-sized adamantoid compound. Chem. Commun. 39, 4756–4758 (2008)

    Article  Google Scholar 

  36. Xu, D., Warmuth, R.: Edge-directed dynamic covalent synthesis of a chiral nanocube. J. Am. Chem. Soc. 130, 7520–7521 (2008)

    Article  CAS  Google Scholar 

  37. Lin, Z., Emge, T.J., Warmuth, R.: Multicomponent assembly of cavitand-based polyacylhydrazone nanocapsules. Chem. Eur. J. 17, 9395–9405 (2011)

    Article  CAS  Google Scholar 

  38. Givelet, C., Sun, J., Xu, D., Emge, T.J., Dhokte, A., Warmuth, R.: Templated dynamic cryptophane formation in water. Chem. Commun. 47, 4511–4513 (2011)

    Article  CAS  Google Scholar 

  39. Sun, J., Bennett, J.L., Emge, T.J., Warmuth, R.: Thermodynamically controlled synthesis of a chiral tetra-cavitand nanocapsule and mechanism of enantiomerization. J. Am. Chem. Soc. 133, 3268–3271 (2011)

    Article  CAS  Google Scholar 

  40. Sun, J., Warmuth, R.: Rational design of a nanometre-sized covalent octahedron. Chem. Commun. 47, 9351–9353 (2011)

    Article  CAS  Google Scholar 

  41. Jin, Y., Jin, A., McCaffrey, R., Long, H., Zhang, W.: Design strategies for shape-persistent covalent organic polyhedrons (COPs) through imine condensation/metathesis. J. Org. Chem. 77, 7392–7400 (2012)

    Article  CAS  Google Scholar 

  42. Jin, Y., Yu, C., Denman, R.J., Zhang, W.: Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013)

    Article  CAS  Google Scholar 

  43. Briggs, M.E., Jelfs, K.E., Chong, S.Y., Lester, C., Schmidtmann, M., Adams, D.J., Cooper, A.I.: Shape prediction for supramolecular organic nanostructures: [4 + 4] macrocyclic tetrapods. Cryst. Growth Des. 13, 4993–5000 (2013)

    Article  CAS  Google Scholar 

  44. Acharyya, K., Mukherjee, S., Mukherjee, P.S.: Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation. J. Am. Chem. Soc. 135, 554–557 (2013)

    Article  CAS  Google Scholar 

  45. Chen, D., Martell, A.E.: The synthesis of new binucleating polyaza macrocyclic and macrobicyclic ligands: dioxygen affinities of the cobalt complexes. Tetrahedron 47, 6895–6902 (1991)

    Article  CAS  Google Scholar 

  46. Lu, Q., McKee, V., Nelson, J.: Redox-linked pyrrole NH deprotonation in a dicopper azacryptate system. J. Chem. Soc. Chem. Commun. 5, 649–651 (1994)

    Article  Google Scholar 

  47. Fox, O.D., Rolls, T.D., Drew, M.G.B., Beer, P.D.: The binding of difunctional neutral guest molecules by novel bis(tripyrrolyl) cryptands. Chem. Commun. 17, 1632–1633 (2001)

    Article  Google Scholar 

  48. Francesconi, O., Ienco, A., Moneti, G., Nativi, C., Roelens, S.: A self-assembled pyrrolic cage receptor specifically recognizes β-glucopyranosides. Angew. Chem. Int. Ed. 45, 6693–6696 (2006)

    Article  CAS  Google Scholar 

  49. Guchhait, T., Mani, G.: Dipyrrolylmethane-based macrobicyclic azacryptand: synthesis, X-ray structures, conformational and anion binding properties. J. Org. Chem. 76, 10114–10121 (2011)

    Article  CAS  Google Scholar 

  50. Guchhait, T., Mani, G., Schulzke, C., Anoop, A.: A tripyrrolylmethane-based macrobicyclic triazacryptand: X-ray structure, size-selective anion binding, and fluoride-ion-mediated proton-deuterium exchange studies. Inorg. Chem. 51, 11635–11644 (2012)

    Article  CAS  Google Scholar 

  51. Jana, D., Mani, G., Schulzke, C.: Synthesis of novel polyazacryptands for recognition of tetrahedral oxoanions and their X-ray structures. Inorg. Chem. 52, 6427–6439 (2013)

    Article  CAS  Google Scholar 

  52. Kumar, R., Guchhait, T., Mani, G.: Synthesis and X-ray structures of novel macrocycles and macrobicycles containing N, N-Di(pyrrolylmethyl)-N-methylamine moiety: preliminary anion binding study. Inorg. Chem. 51, 9029–9038 (2012)

    Article  CAS  Google Scholar 

  53. Liu, Y., Liu, X., Warmuth, R.: Multicomponent dynamic covalent assembly of a rhombicuboctahedral nanocapsule. Chem. Eur. J. 13, 8953–8959 (2007)

    Article  CAS  Google Scholar 

  54. Mastalerz, M., Schneider, M.W., Oppel, I.M., Presly, O.: A salicylbisimine cage compound with high surface area and selective CO2/CH4 adsorption. Angew. Chem. Int. Ed. 50, 1046–1051 (2011)

    Article  CAS  Google Scholar 

  55. Jones, J.T., Hasell, T., Wu, X., Bacsa, J., Jelfs, K.E., Schmidtmann, M., Chong, S.Y., Adams, D.J., Trewin, A., Schiffman, F., Cora, F., Slater, B., Steiner, A., Day, G.M., Cooper, A.I.: Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011)

    Article  CAS  Google Scholar 

  56. Skowronek, P., Warzajtis, B., Rychlewska, U., Gawronski, J.: Self-assembly of a covalent organic cage with exceptionally large and symmetrical interior cavity: the role of entropy of symmetry. Chem. Commun. 49, 2524–2526 (2013)

    Article  CAS  Google Scholar 

  57. Zhang, G., Presly, O., White, F., Oppel, I.M., Mastalerz, M.: A permanent mesoporous organic cage with an exceptionally high surface area. Angew. Chem. Int. Ed. 53, 1516–1520 (2014)

    Article  CAS  Google Scholar 

  58. Zhang, G., Presly, O., White, F., Oppel, I.M., Mastalerz, M.: A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014)

    CAS  Google Scholar 

  59. Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  CAS  Google Scholar 

  60. Hossain, A., Llinares, J.M., Mason, S., Morehouse, P., Powell, D., Bowman-James, K.: Parallels in cation and anion coordination: a new class of cascade complexes. Angew. Chem. Int. Ed. 41, 2335–2338 (2002)

    Article  CAS  Google Scholar 

  61. Kang, S.O., Powell, D., Bowman-James, K.: Anion binding motifs: topicity and charge in amidocryptands. J. Am. Chem. Soc. 127, 13478–13479 (2005)

    Article  CAS  Google Scholar 

  62. Hossain, M.A., Morehouse, P., Powell, D., Bowman-James, K.: Tritopic (cascade) and ditopic complexes of halides with an azacryptand. Inorg. Chem. 44, 2143–2149 (2005)

    Article  CAS  Google Scholar 

  63. Ahmed, L., Rhaman, M.M., Mendy, J.S., Wang, J., Fronczek, F.R., Powell, D.R., Leszczynski, J., Hossain, M.A.: Experimental and theoretical studies on halide binding with a p-xylyl-based azamacrocycle. J. Phys. Chem. A 119, 383–394 (2015)

    Article  CAS  Google Scholar 

  64. Shi, Y., Cao, C., Odom, A.L.: Synthesis and group 4 complexes of tris(pyrrolyl-α-methyl)amine. Inorg. Chem. 43, 275–281 (2004)

    Article  CAS  Google Scholar 

  65. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A.: Completion and refinement of crystal structures with SIR92. J. Appl. Cryst. 26, 343–350 (1993)

    Article  Google Scholar 

  66. Sheldrick, G.M.: A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the CSIR and DST for support and for the X-ray and NMR facilities. We also thank Dr. Carola Schulzke, Institut für Biochemie, Ernst-Moritz-Arndt Universitäet Greifswald, Germany for X-ray structure refinement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesan Mani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10847_2015_517_MOESM1_ESM.doc

Supplementary material 1 (DOC 10092 kb). Electronic supplementary material The online version of this article (doi:) contains supplementary material, NMR, HRMS, IR and X-ray structure of 2, which is available to authorized users

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, D., Das, S. & Mani, G. Self assembled macrobicycle and tricycle cages containing pyrrole rings by dynamic covalent chemistry method. J Incl Phenom Macrocycl Chem 82, 461–470 (2015). https://doi.org/10.1007/s10847-015-0517-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0517-8

Keywords

Navigation