Skip to main content
Log in

Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A new calix platform i.e. resorcinarene tetra hydrazide (RTH) has been synthesized and duly characterized by IR, NMR and ESI–MS. Only one agent i.e. RTH has been used as reducing as well as stabilizing agent for the synthesis of gold nanoparticles (AuNps). The synthesised RTH-AuNPs were characterized and analyzed by UV/Vis-spectroscopy, transmission electron microscopy and energy dispersive X-ray analysis. RTH-AuNps were checked for their stability at different pH and temperature. RTH-AuNps having characteristic surface plasmon resonance and being fluorescent in nature were explored for their interaction behavior with different amino acids (AA) by UV–Visible and fluorescence spectroscopy. Among various AA RTH-AuNps were found to be meticulously selective and sensitive for phenylalanine (PHE) by means of fluorescence quenching. This assay allowed rapid and accurate determination of PHE in aqueous medium at room temperature with a linear range of detection from 100 to 820 nM. Furthermore, the RTH-AuNps were also used for successful determination of PHE in human serum providing a scope of detection and determination of PHE in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AuNps:

Gold nanoparticles

RTH:

Resorcinarene tetrahydrazide

RTH-AuNps:

Resorcinarene tetrahydrazide stabilized gold nanoparticles

References

  1. Lyshevski, S.E.: Nano and molecular electronics handbook. CRC Press, Boca Raton (2010)

    Google Scholar 

  2. Novotny, L., Hecht, B.: Principles of nano-optics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  3. Skomski, R.: Nanomagnetics. J. Phys. 15(20), R841 (2003)

    CAS  Google Scholar 

  4. Candelaria, S.L., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J.-G., Wang, Y., Liu, J., Li, J., Cao, G.: Nanostructured carbon for energy storage and conversion. Nano Energy 1(2), 195–220 (2012)

    Article  CAS  Google Scholar 

  5. Polshettiwar, V., Varma, R.S.: Green chemistry by nano-catalysis. Green Chem. 12(5), 743–754 (2010)

    Article  CAS  Google Scholar 

  6. Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed, M.A.: The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779 (2012)

    Article  CAS  Google Scholar 

  7. Lo, L., Li, Y., Yeung, K., Yuen, C.: Indicating the development stage of nanotechnology in the textile and clothing industry. Int. J. Nanotechnol. 4(6), 667–679 (2007)

    Article  Google Scholar 

  8. Mu, L., Sprando, R.L.: Application of nanotechnology in cosmetics. Pharm. Res. 27(8), 1746–1749 (2010)

    Article  CAS  Google Scholar 

  9. Naveenraj, S., Anandan, S., Kathiravan, A., Renganathan, R., Ashokkumar, M.: The interaction of sonochemically synthesized gold nanoparticles with serum albumins. J. Pharm. Biomed. Anal. 53(3), 804–810 (2010). doi:10.1016/j.jpba.2010.03.039

    Article  CAS  Google Scholar 

  10. Wangoo, N., Bhasin, K.K., Mehta, S.K., Suri, C.R.: Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: bioconjugation and binding studies. J. Colloid Interface Sci. 323(2), 247–254 (2008). doi:10.1016/j.jcis.2008.04.043

    Article  CAS  Google Scholar 

  11. Huang, X., El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1(1), 13–28 (2010). doi:10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  12. Chuang, Y.-C., Li, J.-C., Chen, S.-H., Liu, T.-Y., Kuo, C.-H., Huang, W.-T., Lin, C.-S.: An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials 31(23), 6087–6095 (2010). doi:10.1016/j.biomaterials.2010.04.026

    Article  CAS  Google Scholar 

  13. Mihailescu, G., Olenic, L., Pruneanu, S., Bratu, I., Kacso, I.: The effect of pH on amino acids binding to gold nanoparticles. J. Optoelectron. Adv. Mater. 9(3), 756–759 (2007)

    CAS  Google Scholar 

  14. Wei, X., Qi, L., Tan, J., Liu, R., Wang, F.: A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles. Anal. Chim. Acta. 671(1–2), 80–84 (2010). doi:10.1016/j.aca.2010.05.006

    Article  CAS  Google Scholar 

  15. Misra, T.K., Chen, T.S., Liu, C.Y.: Phase transfer of gold nanoparticles from aqueous to organic solution containing resorcinarene. J. Colloid Interface Sci. 297(2), 584–588 (2006). doi:10.1016/j.jcis.2005.11.013

    Article  CAS  Google Scholar 

  16. Stavens, K.B., Pusztay, S.V., Zou, S., Andres, R.P., Wei, A.: Encapsulation of neutral gold nanoclusters by resorcinarenes. Langmuir 15(24), 8338–8339 (1999)

    Article  Google Scholar 

  17. Wei, A., Kim, B., Pusztay, S.V., Tripp, S.L., Balasubramanian, R.: Resorcinarene-encapsulated nanoparticles: building blocks for self-assembled nanostructures. J. Incl. Phenom. Macrocycl. Chem. 41, 83–86 (2001)

    Article  CAS  Google Scholar 

  18. Yao, Y.姚.S., Yan(孙燕) Han, Ying(韩莹) Yan, Chaoguo*(颜朝国): Preparation of resorcinarene-functionalized gold nanoparticles and their catalytic activities for reduction of aromatic nitro compounds. Chin. J. Chem. 28, 705–712 (2010)

  19. Kim, B., Balasubramanian, R., Pe´rez-Segarra, W., Wei, A., Decker, B., Mattay, J.: Self-assembly of resorcinarene-stabilized gold nanoparticles: influence of the macrocyclic headgroup. Supramol. Chem. 17(1–2), 173–180 (2005)

    Article  CAS  Google Scholar 

  20. Balasubramanian, R., Kim, B., Tripp, S.L., Wang, X., Lieberman, M., Wei, A.: Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir 18, 3676–3681 (2002)

    Article  CAS  Google Scholar 

  21. Shen, M., Chen, W.F., Sun, Y., Yan, C.-G.: Synthesis and characterization of water-soluble gold colloids stabilized with aminoresorcinarene. J. Phys. Chem. Solids 68, 2252–2261 (2007)

    Article  CAS  Google Scholar 

  22. Bhatt, K.D., Vyas, D.J., Makwana, B.A., Darjee, S.M., Jain, V.K.: Highly stable water dispersible calix[4]pyrrole octa-hydrazide protected gold nanoparticles as colorimetric and fluorometric chemosensors for selective signaling of Co(II) ions. Spectrochim. Acta Part A 121, 94–100 (2014). doi:10.1016/j.saa.2013.10.076

    Article  CAS  Google Scholar 

  23. Vyas, D.J., Makwana, B.A., Gupte, H.S., Bhatt, K.D., Jain, V.K.: An efficient one pot synthesis ofwater-dispersible calix[4]arene polyhydrazide protected gold nanoparticles—a “turn off” fluorescent sensor for Hg[II] ions. J. Nanosci. Nanotechnol 12(1–7), 73–80 (2012). doi:10.1166/jnn.2012.5837

    Google Scholar 

  24. Makwana, B.A., Vyas, D.J., Bhatt, K.D., Jain, V.K., Agrawal, Y.K.: Highly stable antibacterial silver nanoparticles as selective fluorescent sensor for Fe3+ ions. Spectrochim. Acta Part A 134, 73–80 (2015). doi:10.1016/j.saa.2014.05.044

    Article  CAS  Google Scholar 

  25. Blikova, Y.N., Otkidach, K.N., Shvedene, N.V., Pletnev, I.V., Sheina, N.M., Gorbunova, Y.G.: Metal phthalocyanine and crown ether-based membranes for the potentiometric determination of phenylalanine methyl ester using an ion-selective electrode. J. Anal. Chem. 59(6), 584–589 (2004). doi:10.1023/B:JANC.0000030884.77442.12

    Article  CAS  Google Scholar 

  26. Kamruzzaman, M., Alam, A.-M., Kim, K.M., Lee, S.H., Kim, Y.H., Kim, G.-M., Dang, T.D.: Microfluidic chip based chemiluminescence detection of l-phenylalanine in pharmaceutical and soft drinks. Food Chem. 135(1), 57–62 (2012). doi:10.1016/j.foodchem.2012.04.062

    Article  CAS  Google Scholar 

  27. Li, C.F., Du, L.M., Wu, H., Chang, Y.X.: Determination of l-phenylalanine by cucurbit[7]uril sensitized fluorescence quenching method. Chin. Chem. Lett. 22(7), 851–854 (2011). doi:10.1016/j.cclet.2010.12.029

    Article  CAS  Google Scholar 

  28. Hood, A., Grange, D.K., Christ, S.E., Steiner, R., White, D.A.: Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Mol. Genet. Metab. 111, 445–451 (2014). doi:10.1016/j.ymgme.2014.01.012

    Article  CAS  Google Scholar 

  29. Prinsen, H.C.M.T., Holwerda-Loof, N.E., de Sain-van der Velden, M.G.M., Visser, G., Verhoeven-Duif, N.M.: Reliable analysis of phenylalanine and tyrosine in a minimal volume of blood. Clin. Biochem. 46(13–14), 1272–1275 (2013). doi:10.1016/j.clinbiochem.2013.05.054

    Article  CAS  Google Scholar 

  30. Pimentel, F.B., Alves, R.C., Costa, A.S.G., Torres, D., Almeida, M.F., Oliveira, M.B.P.P.: Phenylketonuria: protein content and amino acids profile of dishes for phenylketonuric patients. The relevance of phenylalanine. Food Chem. 149, 144–150 (2014). doi:10.1016/j.foodchem.2013.10.099

    Article  CAS  Google Scholar 

  31. Zhang, K., Yan, H.-T., Zhou, T.: Spectrofluorimetric determination of phenylalanine based on fluorescence enhancement of europium ion immobilized with sol–gel method. Spectrochim. Acta Part A 83(1), 155–160 (2011). doi:10.1016/j.saa.2011.08.007

    Article  CAS  Google Scholar 

  32. Cheng, C., Wu, S.-C.: Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography. J. Chromatogr. A 1218(20), 2976–2983 (2011). doi:10.1016/j.chroma.2011.03.033

    Article  CAS  Google Scholar 

  33. Wang, L., Li, L.-L., Ma, H.L., Wang, H.: Recent advances in biocompatible supramolecular assemblies for biomolecular detection and delivery. Chin. Chem. Lett. 24(5), 351–358 (2013). doi:10.1016/j.cclet.2013.03.018

    Article  CAS  Google Scholar 

  34. Vyas, D.J., Makwana, B.A., Gupte, H.S., Bhatt, K.D., Jain, V.K.: An efficient one pot synthesis of water-dispersible calix[4]arene polyhydrazide protected gold nanoparticles-a turn off fluorescent sensor for Hg[II] Ions. J. Nanosci. Nanotechnol. 12(5), 3781–3787 (2012)

    Article  CAS  Google Scholar 

  35. Nickel, U., zu Castell, A., Pöppl, K., Schneider, S.: A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16(23), 9087–9091 (2000)

    Article  CAS  Google Scholar 

  36. Chen, M., Feng, Y.G., Wang, X., Li, T.C., Zhang, J.Y., Qian, D.J.: Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23(10), 5296–5304 (2007)

    Article  CAS  Google Scholar 

  37. Newman, J., Blanchard, G.: Formation of gold nanoparticles using amine reducing agents. Langmuir 22(13), 5882–5887 (2006)

    Article  CAS  Google Scholar 

  38. Oshima, T., Goto, M., Furusaki, S.: Extraction behavior of amino acids by calix [6] arene carboxylic acid derivatives. J. Incl. Phenom. Macrocycl. Chem. 43(1), 77–86 (2002)

    Article  CAS  Google Scholar 

  39. Farokhcheh, A., Alizadeh, N.: Amino acid detection using fluoroquinolone–Cu2+ complex as a switch-on fluorescent probe by competitive complexation without derivatization. J. Lumin. 145, 708–712 (2014). doi:10.1016/j.jlumin.2013.08.039

    Article  CAS  Google Scholar 

  40. Jans, H., Huo, Q.: Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 41(7), 2849–2866 (2012)

    Article  CAS  Google Scholar 

  41. Chen, W., Tu, X., Guo, X.: Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions. Chem. Commun. 13, 1736–1738 (2009). doi:10.1039/B820145E

    Article  Google Scholar 

  42. Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., Parak, W.J.: Biological applications of gold nanoparticles. Chem. Soc. Rev. 37(9), 1896–1908 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by University Grant Commission (New Delhi). The authors also acknowledge Sophisticated Analytical Instrument Facility (Panjab University), Central Salt & Marine Chemicals Research Institute (Bhavanagar) and Gujarat Forensic Sciences University (Gandhinagar) for providing instrumental facilities and Information and Library Network (Ahmedabad) for e-journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D.R., Darjee, S.M., Bhatt, K.D. et al. Calix protected gold nanobeacon as turn-off fluorescent sensor for phenylalanine. J Incl Phenom Macrocycl Chem 82, 425–436 (2015). https://doi.org/10.1007/s10847-015-0509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0509-8

Keywords

Navigation