Skip to main content
Log in

Robust image-based cross-sectional grain boundary detection and characterization using machine learning

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Understanding the anisotropic sintering behavior of 3D-printed materials requires massive analytic studies on their grain boundary (GB) structures. Accurate characterization of the GBs is critical to study the metallurgical process. However, it is challenging and time-consuming for sintered 3D-printed materials due to immature etching and residual pores. In this study, we developed a machine learning-based method of characterizing GBs of sintered 3D-printed materials. The developed method is also generalizable and robust enough to characterize GBs from other non-3D-printed materials. This method can be applied to a small dataset because it includes a diffusion network that generate augmented images for training. The study compared various machine learning methods commonly used for segmentation, which include UNet, ResNeXt, and Ensemble of UNets. The comparison results showed that the Ensemble of UNets outperformed the other methods for the GB detection and characterization. The model is tested on unclear GBs from sintered 3D-printed samples processed with non-optimized etching and classifies the GBs with around 90% accuracy. The model is also tested on images with clear GBs from literature and classifies GBs with 92% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

References

Download references

Funding

This work is supported by the National Science Foundation (Grant No. 2119832).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satterlee, N., Jiang, R., Olevsky, E. et al. Robust image-based cross-sectional grain boundary detection and characterization using machine learning. J Intell Manuf (2024). https://doi.org/10.1007/s10845-024-02383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10845-024-02383-6

Keywords

Navigation