Skip to main content
Log in

Ontologies for prognostics and health management of production systems: overview and research challenges

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Prognostics and Health Management (PHM) approaches aim to intervene in the equipment of production systems before faults occur. To properly implement a PHM system, data-centric steps must be taken, including data acquisition and manipulation, detection of machine states, health assessment, prognosis of future failures, and advisory generation. The data generated by different data sources, such as maintenance management systems, equipment manufacturer manuals, design documentation, and process monitoring and control systems, are fundamental for PHM steps. Discovering and using the knowledge embedded in this data is relevant because, for example, data-driven techniques require knowledge, maintenance data often contain tacit knowledge that can facilitate knowledge transfer and collaboration between maintenance personnel with different levels of experience and expertise, and the knowledge related to the same types of systems could be context-dependent. However, the heterogeneity of data sources, the variety of data types, and the possibility of context-dependent data pose challenges in revealing the real value of data and discovering the useful, yet hidden, patterns embedded in maintenance data that can lead to explicit knowledge. Ontologies can effectively contribute to this issue through the organization of data, semantic annotation, integration, and checking of consistency. Several ontologies contributing to the PHM process have been proposed in the scientific literature. However, to the best of our knowledge, no overview of the available ontologies contributing to the PHM steps of production systems is present in the literature. Therefore, this paper aimed to investigate the ontologies and knowledge graphs proposed in the literature for the PHM of production systems. A systematic analysis and mapping of the literature was performed, and the main information was extracted and discussed according to (i) the type and year of the publication, (ii) the ontological and non-ontological resources adopted for designing the ontology/knowledge graph, (iii) the method adopted for implementing the approach, (iv) the type of application, (v) the step(s) of the PHM process on which the article is focused, and (vi) the type of decisions (strategical, tactical, or operational) to which the ontology/knowledge graph is adopted. Subsequently, the conducted analysis led to the definition of a research agenda in the domain, including the following challenges to address: (1) alignment of the ontologies in the maintenance field with respect to top-level ontologies, (2) connection among the different PHM steps at the operational level, (3) major exploitation of the combination of data-driven AI, ontologies, and reasoning for predictive maintenance, and (4) supporting sustainability-related challenges through the connection between the production system, maintenance system, and product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are properly cited in this article and in its Appendix.

References

  • Al-Shdifat, A., Emmanouilidis, C., Khan, M., & Starr, A. (2020). Ontology-based context resolution in internet of things enabled diagnostics. IFAC-PapersOnLine, 53(3), 251–256. https://doi.org/10.1016/j.ifacol.2020.11.041

    Article  Google Scholar 

  • Arp, R., Smith, B., & Spear, A. D. (2015). Building ontologies with basic formal ontology. Mit Press

  • Bekkaoui, M., Karray, M. H., & Sari, Z. (2015). Knowledge formalization for experts’ selection into a collaborative maintenance platform. IFAC-PapersOnLine, 48(3), 1445–1450. https://doi.org/10.1016/j.ifacol.2015.06.290

    Article  Google Scholar 

  • Canito, A., Corchado, J., & Marreiros, G. (2022). A systematic review on time-constrained ontology evolution in predictive maintenance. Artificial Intelligence Review, 55(4), 3183–3211. https://doi.org/10.1007/s10462-021-10079-z

    Article  Google Scholar 

  • Cao, Q. (2018). Semantic Technologies for the Modeling of Condition Monitoring Knowledge in the Framework of Industry 4.0. In EKAW (Doctoral Consortium).

  • Cao, Q., Samet, A., Zanni-Merk, C., de Beuvron, F. D. B., & Reich, C. (2020). Combining evidential clustering and ontology reasoning for failure prediction in predictive maintenance. In ICAART (2) (pp. 618–625). https://doi.org/10.5220/0008969506180625

  • Cao, Q., Samet, A., Zanni-Merk, C., & de Bertrand de Beuvron, F., & Reich, C. (2020b). Combining chronicle mining and semantics for predictive maintenance in manufacturing processes. Semantic Web, 11(6), 927–948. https://doi.org/10.3233/SW-200406

    Article  Google Scholar 

  • Cao, Q., Samet, A., Zanni-Merk, C., de Beuvron, F. D. B., & Reich, C. (2019a). An ontology-based approach for failure classification in predictive maintenance using fuzzy C-means and SWRL rules. Procedia Computer Science, 159, 630–639. https://doi.org/10.1016/j.procs.2019.09.218

    Article  Google Scholar 

  • Cao, Q., Zanni-Merk, C., Samet, A., Reich, C., De Beuvron, F. D. B., Beckmann, A., & Giannetti, C. (2022). KSPMI: a knowledge-based system for predictive maintenance in industry 4.0. Robotics and Computer-Integrated Manufacturing, 74, 102281. https://doi.org/10.1016/j.rcim.2021.102281

    Article  Google Scholar 

  • Cao, Q., Giustozzi, F., & Zanni-Merk, C. (2019). Smart condition monitoring for industry 4.0 manufacturing processes: An ontology-based approach. Cybernetics and Systems, 50(2), 82–96. https://doi.org/10.1080/01969722.2019.1565118

    Article  Google Scholar 

  • Cao, Q., Zanni-Merk, C., & Reich, C. (2019c). Towards a core ontology for condition monitoring. Procedia Manufacturing, 28, 177–182. https://doi.org/10.1016/j.promfg.2018.12.029

    Article  Google Scholar 

  • Cattaneo, L., Polenghi, A., & Macchi, M. (2022). A framework to integrate novelty detection and remaining useful life prediction in Industry 4.0-based manufacturing systems. International journal of computer integrated manufacturing, 35(4–5), 388–408. https://doi.org/10.1080/0951192X.2021.1885062

    Article  Google Scholar 

  • Ceusters, W. (2012, January). An information artifact ontology perspective on data collections and associated representational artifacts. In MIE (pp. 68–72).

  • Chan, C. W. (2005). An expert decision support system for monitoring and diagnosis of petroleum production and separation processes. Expert Systems with Applications, 29(1), 131–143. https://doi.org/10.1016/j.eswa.2005.01.009

    Article  Google Scholar 

  • Chebel-Morello, B., Rasovska, I., & Zerhouni, N. (2005). Knowledge capitalization in system of equipment diagnosis and repair help. In IJCAI ‘2005: Workshop on knowledge management and organizational memories (pp. 55–66).

  • Chen, R., Zhou, Z., Liu, Q., Pham, D. T., Zhao, Y., Yan, J., & Wei, Q. (2015). Knowledge modeling of fault diagnosis for rotating machinery based on ontology. In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN) (pp. 1050–1055). IEEE. https://doi.org/10.1109/INDIN.2015.7281880

  • Chi, Y., Dong, Y., Wang, Z. J., Yu, F. R., & Leung, V. C. (2022). Knowledge-based fault diagnosis in industrial internet of things: a survey. IEEE Internet of Things Journal, 9(15), 12886–12900.

    Article  Google Scholar 

  • Cho, S., Hildebrand-Ehrhardt, M., May, G., & Kiritsis, D. (2020). Ontology for Strategies and Predictive Maintenance models. IFAC-PapersOnLine, 53(3), 257–264. https://doi.org/10.1016/j.ifacol.2020.11.042

    Article  Google Scholar 

  • Common Core Ontologies (CCO). Accessed February 8, 2024 https://github.com/CommonCoreOntology/CommonCoreOntologies.

  • Compare, M., Baraldi, P., & Zio, E. (2019). Challenges to IoT-enabled predictive maintenance for industry 4.0. IEEE Internet of Things Journal, 7(5), 4585–4597. https://doi.org/10.1109/JIOT.2019.2957029

    Article  Google Scholar 

  • Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S., Favilla, J., & Barbosa, J. (2020). Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Computers in Industry, 123, 103298. https://doi.org/10.1016/j.compind.2020.103298

    Article  Google Scholar 

  • Dendani, N., Khadir, M. T., & Guessoum, S. (2011). Use a Domain Ontology in CBR Systems for Fault Diagnosis. In CIIA.

  • Dendani-Hadiby, N., & Khadir, M. T. (2012). A case based reasoning system based on domain ontology for fault diagnosis of steam turbines. International Journal of Hybrid Information Technology, 5(3), 89–104.

    Google Scholar 

  • Drobnjakovic, M., Kulvatunyou, B., Ameri, F., Will, C., Smith, B., & Jones, A. (2022). The Industrial Ontologies Foundry (IOF) Core Ontology.

  • Ebrahimipour, V., & Yacout, S. (2015). Ontology-based knowledge platform to support equipment health in plant operations. Ontology modeling in physical asset integrity management. https://doi.org/10.1007/978-3-319-15326-1_8

    Article  Google Scholar 

  • Efthymiou, K., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2012). On a predictive maintenance platform for production systems. Procedia CIRP, 3, 221–226. https://doi.org/10.1016/j.procir.2012.07.039

    Article  Google Scholar 

  • El Ghosh, M., Naja, H., Abdulrab, H., & Khalil, M. (2016). Towards a middle-out approach for building legal domain reference ontology. International Journal of Knowledge Engineering, 2(3), 109–114.

    Article  Google Scholar 

  • Emmanouilidis, C., Gregori, M., & Al-Shdifat, A. (2020). Context Ontology Development for Connected Maintenance Services. IFAC-PapersOnLine, 53(2), 10923–10928. https://doi.org/10.1016/j.ifacol.2020.12.2833

    Article  Google Scholar 

  • Feng, L., Chen, G., Chen, C., Chen, L., & Peng, J. (2018). Ontology faults diagnosis model for the hazardous chemical storage device. 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 269–274). IEEE. https://doi.org/10.1109/ICCI-CC.2018.8482025

    Chapter  Google Scholar 

  • Feng, L., Chen, G., & Peng, J. (2018b). An ontology-based cognitive model for faults diagnosis of hazardous chemical storage devices. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 12(4), 101–114. https://doi.org/10.4018/IJCINI.2018100106

    Article  Google Scholar 

  • Fernández-López, M., Gómez-Pérez, A., & Juristo, N. (1997). Methontology: from ontological art towards ontological engineering.

  • Franciosi, C., Iung, B., Miranda, S., & Riemma, S. (2018). Maintenance for Sustainability in the Industry 4.0 context: a Scoping Literature Review. IFAC-PapersOnLine, 51(11), 903–908. https://doi.org/10.1016/j.ifacol.2018.08.459

    Article  Google Scholar 

  • Franciosi, C., Roda, I., Voisin, A., Miranda, S., Macchi, M., & Iung, B. (2021). Sustainable maintenance performances and EN 15341: 2019: An integration proposal. In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part IV (pp. 401–409). Springer International Publishing. https://doi.org/10.1007/978-3-030-85910-7_42

  • Franciosi, C., Voisin, A., Miranda, S., Riemma, S., & Iung, B. (2020). Measuring maintenance impacts on sustainability of manufacturing industries: From a systematic literature review to a framework proposal. Journal of Cleaner Production, 260, 121065. https://doi.org/10.1016/j.jclepro.2020.121065

    Article  Google Scholar 

  • Franciosi, C., Polenghi, A., Lezoche, M., Voisin, A., Roda, I., & Macchi, M. (2022, October). Semantic Interoperability in Industrial Maintenance-related Applications: Multiple Ontologies Integration towards a Unified BFO-compliant Taxonomy. In 16th IFAC/IFIP International Workshop on Enterprise Integration, Interoperability and Networking (pp. 218–229). SCITEPRESS-Science and Technology Publications. https://doi.org/10.5220/0011560800003329

  • Geng, D., & Fu, X. (2020). Research on fault diagnosis mechanism of production line equipment based on semantic. 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC) (pp. 220–223). IEEE. https://doi.org/10.1109/ICEIEC49280.2020.9152301

    Chapter  Google Scholar 

  • Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199–220. https://doi.org/10.1006/knac.1993.1008

    Article  Google Scholar 

  • Guizzardi, G., Botti Benevides, A., Fonseca, C. M., Porello, D., Almeida, J. P. A., & Prince Sales, T. (2022). UFO: Unified foundational ontology. Applied Ontology, 17(1), 167–210. https://doi.org/10.3233/AO-210256

    Article  Google Scholar 

  • Hossayni, H., Khan, I., Aazam, M., Taleghani-Isfahani, A., & Crespi, N. (2020). SemKoRe: Improving machine maintenance in industrial iot with semantic knowledge graphs. Applied Sciences, 10(18), 6325. https://doi.org/10.3390/app10186325

    Article  Google Scholar 

  • Huang, L., & Murphey, Y. L. (2006). Text mining with application to engineering diagnostics. In Advances in Applied Artificial Intelligence: 19th International Conference on Industrial,Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2006, Annecy, France, June 27−30, 2006. Proceedings 19 (pp. 1309−1317). Springer Berlin Heidelberg.

  • Industrial Ontologies Foundry (IOF). Accessed the 18th of March 2023. https://industrialontologies.org/.

  • IEC 60812:2018 - Failure modes and effects analysis (FMEA and FMECA).

  • BS EN 13306:2017 - Maintenance. Maintenance terminology.

  • ISO 13372:2012 - Condition monitoring and diagnostics of machines.

  • ISO 13374:2015 - Condition monitoring and diagnostics of machine systems — Data processing, communication and presentation.

  • ISO 14224:2016 - Petroleum, petrochemical and natural gas industries - Collection and exchange of reliability and maintenance data for equipment.

  • ISO 2041:2018 - Mechanical vibration, shock and condition monitoring.

  • ISO/IEC 21838-2:2021 - Information technology -- Top-level ontologies (TLO) - Part 2: Basic Formal Ontology (BFO).

  • ISO 55000:2014 - Asset management - Overview, principles and terminology.

  • Ji, B., Ameri, F., Choi, J., & Cho, H. (2019). Hybrid Approach Using Ontology-Supported Case-Based Reasoning and Machine Learning for Defect Rate Prediction. In Advances in Production Management Systems. Production Management for the Factory of the Future: IFIP WG 5.7 International Conference, APMS 2019, Austin, TX, USA, September 1–5, 2019, Proceedings, Part I (pp. 291–298). Springer International Publishing. https://doi.org/10.1007/978-3-030-30000-5_37

  • Jin, G., Xiang, Z., & Lv, F. (2009). Semantic integrated condition monitoring and maintenance of complex system. 2009 16th International Conference on Industrial Engineering and Engineering Management (pp. 670–674). IEEE. https://doi.org/10.1109/ICIEEM.2009.5344503

    Chapter  Google Scholar 

  • Karray, M. H., Ameri, F., Hodkiewicz, M., & Louge, T. (2019). ROMAIN: Towards a BFO compliant reference ontology for industrial maintenance. Applied Ontology, 14(2), 155–177. https://doi.org/10.3233/AO-190208

    Article  Google Scholar 

  • Karray, M. H., Chebel Morello, B., & Zerhouni, N. (2010). Towards a maintenance semantic architecture. In Engineering Asset Lifecycle Management: Proceedings of the 4th World Congress on Engineering Asset Management (WCEAM 2009), 28–30 September 2009 (pp. 98–111). Springer. https://doi.org/10.1007/978-0-85729-320-6_12

  • Karray, M. H., Chebel-Morello, B., & Zerhouni, N. (2012). A formal ontology for industrial maintenance. Applied Ontology, 7(3), 269–310. https://doi.org/10.3233/AO-2012-0112

    Article  Google Scholar 

  • Kharlamov, E., Mehdi, G., Savković, O., Xiao, G., Kalaycı, E. G., & Roshchin, M. (2019). Semantically-enhanced rule-based diagnostics for industrial Internet of Things: The SDRL language and case study for Siemens trains and turbines. Journal of Web Semantics, 56, 11–29. https://doi.org/10.1016/j.websem.2018.10.004

    Article  Google Scholar 

  • Kharlamov, E., Savković, O., Ringsquandl, M., Xiao, G., Mehdi, G., Kalayc, E. G., ... & Runkler, T. (2018). Diagnostics of trains with semantic diagnostics rules. In Inductive Logic Programming: 28th International Conference, ILP 2018, Ferrara, Italy, September 2–4, 2018, Proceedings 28 (pp. 54–71). Springer International Publishing. https://doi.org/10.1007/978-3-319-99960-9_4

  • Kharlamov, E., Solomakhina, N., Özçep, Ö. L., Zheleznyakov, D., Hubauer, T., Lamparter, S., ... & Watson, S. (2014). How semantic technologies can enhance data access at siemens energy. In The Semantic Web–ISWC 2014: 13th International Semantic Web Conference, Riva del Garda, Italy, October 19–23, 2014. Proceedings, Part I 13 (pp. 601–619). Springer International Publishing. https://doi.org/10.1007/978-3-319-11964-9_38

  • Karuppiah, K., Sankaranarayanan, B., & Ali, S. M. (2021). On sustainable predictive maintenance: Exploration of key barriers using an integrated approach. Sustainable Production and Consumption, 27, 1537–1553. https://doi.org/10.1016/j.spc.2021.03.023

    Article  Google Scholar 

  • Lamy, J. (2021). Ontologies with python. Apress.

    Google Scholar 

  • Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1–2), 314–334. https://doi.org/10.1016/j.ymssp.2013.06.004

    Article  Google Scholar 

  • Li, Y., Ouyang, S., & Zhang, Y. (2022). Combining deep learning and ontology reasoning for remote sensing image semantic segmentation. Knowledge-Based Systems, 243, 108469. https://doi.org/10.1016/j.knosys.2022.108469

    Article  Google Scholar 

  • Liu, B., Do, P., Iung, B., & Xie, M. (2019). Stochastic filtering approach for condition-based maintenance considering sensor degradation. IEEE Transactions on Automation Science and Engineering, 17(1), 177–190. https://doi.org/10.1109/TASE.2019.2918734

    Article  Google Scholar 

  • Maleki, E., Belkadi, F., Boli, N., Van Der Zwaag, B. J., Alexopoulos, K., Koukas, S., & Mourtzis, D. (2018). Ontology-based framework enabling smart product-service systems: application of sensing systems for machine health monitoring. IEEE internet of things journal, 5(6), 4496–4505. https://doi.org/10.1109/JIOT.2018.2831279

    Article  Google Scholar 

  • Marquez, A. C., & Gupta, J. N. (2006). Contemporary maintenance management: Process, framework and supporting pillars. Omega, 34(3), 313–326. https://doi.org/10.1016/J.OMEGA.2004.11.003

    Article  Google Scholar 

  • Matsokis, A., & Kiritsis, D. (2012). Ontology-based implementation of an advanced method for time treatment in asset lifecycle management. In Engineering Asset Management and Infrastructure Sustainability: Proceedings of the 5th World Congress on Engineering Asset Management (WCEAM 2010) (pp. 647–662). Springer. https://doi.org/10.1007/978-0-85729-493-7_50

  • Medina-Oliva, G., Voisin, A., Monnin, M., & Leger, J. B. (2014). Predictive diagnosis based on a fleet-wide ontology approach. Knowledge-Based Systems, 68, 40–57. https://doi.org/10.1016/j.knosys.2013.12.020

    Article  Google Scholar 

  • Mehdi, G., Roshchin, M., & Runkler, T. (2017). Internet of Turbines: an outlook on smart diagnostics. In Annual Conference of Prognostics and Health Management Society (pp. 1–7).

  • Mishra, S., & Jain, S. (2020). Ontologies as a semantic model in IoT. International Journal of Computers and Applications, 42(3), 233–243. https://doi.org/10.1080/1206212X.2018.1504461

    Article  Google Scholar 

  • Montero Jiménez, J. J., Vingerhoeds, R., Grabot, B., & Schwartz, S. (2022). An ontology model for maintenance strategy selection and assessment. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-021-01855-3

    Article  Google Scholar 

  • Moran, N., Nieland, S., & Kleinschmit, B. (2017). Combining machine learning and ontological data handling for multi-source classification of nature conservation areas. International Journal of Applied Earth Observation and Geoinformation, 54, 124–133. https://doi.org/10.1016/j.jag.2016.09.009

    Article  Google Scholar 

  • Natarajan, S., Ghosh, K., & Srinivasan, R. (2012). An ontology for distributed process supervision of large-scale chemical plants. Computers & Chemical Engineering, 46, 124–140. https://doi.org/10.1016/j.compchemeng.2012.06.009

    Article  Google Scholar 

  • Natarajan, S., & Srinivasan, R. (2014). Implementation of multi agents based system for process supervision in large-scale chemical plants. Computers & Chemical Engineering, 60, 182–196. https://doi.org/10.1016/j.compchemeng.2013.08.012

    Article  Google Scholar 

  • Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology.

  • Nuñez, D. L., & Borsato, M. (2018). OntoProg: An ontology-based model for implementing Prognostics Health Management in mechanical machines. Advanced Engineering Informatics, 38, 746–759. https://doi.org/10.1016/j.aei.2018.10.006

    Article  Google Scholar 

  • Nuñez, D. L., & Borsato, M. (2017). An ontology-based model for prognostics and health management of machines. Journal of Industrial Information Integration, 6, 33–46. https://doi.org/10.1016/j.jii.2017.02.006

    Article  Google Scholar 

  • Nuñez, D. L., & Borsato, M. (2016). Dependability modeling for the failure prognostics in smart manufacturing. Transdisciplinary Engineering: Crossing Boundaries (pp. 885–894). IOS Press. https://doi.org/10.3233/978-1-61499-703-0-885

    Chapter  Google Scholar 

  • OBO RO-Relational Ontology. Accessed February 8, 2023. https://oborel.github.io/obo-relations/.

  • Palacios, L., Lortal, G., Laudy, C., Sannino, C., Simon, L., Fusco, G., ... & Reynaud, C. (2016, November). Avionics maintenance ontology building for failure diagnosis support. In Proceedings of the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 204–209). https://doi.org/10.5220/0006092002040209

  • Papadopoulos, P., & Cipcigan, L. (2009). Wind turbines’ condition monitoring: an ontology model. 2009 International Conference on Sustainable Power Generation and Supply (pp. 1–4). IEEE. https://doi.org/10.1109/SUPERGEN.2009.5430854

    Chapter  Google Scholar 

  • Polenghi, A., Cattaneo, L., & Macchi, M. (2023). A framework for fault detection and diagnostics of articulated collaborative robots based on hybrid series modelling of Artificial Intelligence algorithms. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-023-02076-6

    Article  Google Scholar 

  • Polenghi, A., Roda, I., Macchi, M., & Pozzetti, A. (2021). Multi-attribute Ontology-based Criticality Analysis of manufacturing assets for maintenance strategies planning. IFAC-PapersOnLine, 54(1), 55–60. https://doi.org/10.1016/j.ifacol.2021.08.192

    Article  Google Scholar 

  • Polenghi, A., Roda, I., Macchi, M., & Pozzetti, A. (2022a). Ontology-augmented Prognostics and Health Management for shopfloor-synchronised joint maintenance and production management decisions. Journal of Industrial Information Integration, 27, 100286. https://doi.org/10.1016/j.jii.2021.100286

    Article  Google Scholar 

  • Polenghi, A., Roda, I., Macchi, M., Pozzetti, A., & Panetto, H. (2022b). Knowledge reuse for ontology modelling in maintenance and industrial asset management. Journal of Industrial Information Integration, 27, 100298. https://doi.org/10.1016/j.jii.2021.100298

    Article  Google Scholar 

  • Qin, H., & Jin, J. (2020, July). Intelligent maintenance of shield tunelling machine based on knowledge graph. In 2020 IEEE 18th International Conference on Industrial Informatics (INDIN) (Vol. 1, pp. 793–797). IEEE. https://doi.org/10.1109/INDIN45582.2020.9442126

  • Rajpathak, D. G. (2013). An ontology based text mining system for knowledge discovery from the diagnosis data in the automotive domain. Computers in Industry, 64(5), 565–580.

    Article  Google Scholar 

  • Rajpathak, D., Siva Subramania, H., & Bandyopadhyay, P. (2012a). Ontology-driven data collection and validation framework for the diagnosis of vehicle health management. International Journal of Computer Integrated Manufacturing, 25(9), 774–789. https://doi.org/10.1080/0951192X.2012.665187

    Article  Google Scholar 

  • Rajpathak, D., Chougule, R., & Bandyopadhyay, P. (2012b). A domain-specific decision support system for knowledge discovery using association and text mining. Knowledge and information systems, 31(3), 405–432.

    Article  Google Scholar 

  • Rasovska, I., Chebel-Morello, B., & Zerhouni, N. (2007). A Case Elaboration Methodology for a Diagnostic and Repair Help System Based on CBR. In FLAIRS Conference (pp. 411–416).

  • Rector, A., Drummond, N., Horridge,M., Rogers, J., Knublauch, H., Stevens, R., ... & Wroe, C. (2004). OWL pizzas: Practical experience of teaching OWL-DL: Common errors & common patterns. In Engineering Knowledge in the Age of the Semantic Web: 14th International Conference, EKAW2004, Whittlebury Hall, UK, October 5–8, 2004. Proceedings 14 (pp. 63–81). SpringerBerlin Heidelberg.

  • Roopa, M. S., Pallavi, B., Buyya, R., Venugopal, K. R., Iyengar, S. S., & Patnaik, L. M. (2021). Social Interaction-Enabled Industrial Internet of Things for Predictive Maintenance. In ICT Systems and Sustainability: Proceedings of ICT4SD 2020, Volume 1 (pp. 661–673). Springer. https://doi.org/10.1007/978-981-15-8289-9_64

  • SAE J1739 - Potential Failure Mode and Effects Analysis (FMEA) Including Design FMEA, Supplemental FMEA-MSR, and Process FMEA.

  • Savković, O., Kharlamov, E., Ringsquandl, M., Xiao, G., Mehdi, G., Kalayc, E. G., ... & Horrocks, I. (2018). Semantic diagnostics of smart factories. In Semantic Technology: 8th Joint International Conference, JIST 2018, Awaji, Japan, November 26–28, 2018, Proceedings 8 (pp. 277–294). Springer International Publishing. https://doi.org/10.1007/978-3-030-04284-4_19

  • Sayed, M. S., & Lohse, N. (2014). Ontology-driven generation of Bayesian diagnostic models for assembly systems. The International Journal of Advanced Manufacturing Technology, 74, 1033–1052. https://doi.org/10.1007/s00170-014-5918-0

    Article  Google Scholar 

  • Schmidt, B., Wang, L., & Galar, D. (2017). Semantic framework for predictive maintenance in a cloud environment. Procedia CIRP, 62, 583–588. https://doi.org/10.1016/j.procir.2016.06.047

    Article  Google Scholar 

  • Shen, B., Zhao, S. Y., & Wang, J. H. (2013). Ontology-based fault diagnosis knowledge representation of CNC machine tool. In Applied Mechanics and Materials (Vol. 427, pp. 1372–1375). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.427-429.1372

  • Siaterlis, G., Franke, M., Klein, K., Hribernik, K. A., Papapanagiotakis, G., Palaiologos, S., ... & Alexopoulos, K. (2022). An IIoT approach for edge intelligence in production environments using machine learning and knowledge graphs. Procedia CIRP, 106, 282–287. https://doi.org/10.1016/j.procir.2022.02.192

  • Steinegger, M., Melik-Merkumians, M., Zajc, J., & Schitter, G. (2017). A framework for automatic knowledge-based fault detection in industrial conveyor systems. 2017 22nd IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 1–6). IEEE. https://doi.org/10.1109/ETFA.2017.8247705

    Chapter  Google Scholar 

  • Teoh, Y. K., Gill, S. S., & Parlikad, A. K. (2021). IoT and fog computing based predictive maintenance model for effective asset management in industry 4.0 using machine learning. IEEE Internet of Things Journal. https://doi.org/10.1109/JIOT.2021.3050441

    Article  Google Scholar 

  • Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A review of diagnostic and prognostic capabilities and best practices for manufacturing. Journal of Intelligent Manufacturing, 30, 79–95. https://doi.org/10.1007/s10845-016-1228-8

    Article  Google Scholar 

  • Voisin, A., Medina-Oliva, G., Monnin, M., Leger, J. B., & Iung, B. (2013). Fleet-wide diagnostic and prognostic assessment. In Annual Conference of the Prognostics and Health Management Society 2013 (p. CDROM).

  • Wang, L., Hodges, J., Yu, D., & Fearing, R. S. (2021). Automatic modeling and fault diagnosis of car production lines based on first-principle qualitative mechanics and semantic web technology. Advanced Engineering Informatics, 49, 101248. https://doi.org/10.1016/j.aei.2021.101248

    Article  Google Scholar 

  • Wang, D., Tang, W. H., & Wu, Q. H. (2010). Ontology-based fault diagnosis for power transformers. IEEE PES General Meeting (pp. 1–8). IEEE. https://doi.org/10.1109/PES.2010.5589575

    Chapter  Google Scholar 

  • Xu, F., Liu, X., Chen, W., Zhou, C., & Cao, B. (2018). Ontology-based method for fault diagnosis of loaders. Sensors, 18(3), 729. https://doi.org/10.3390/s18030729

    Article  Google Scholar 

  • Yang, Z., Qing, L., & Lu, P. (2011). Integration of deep and shallow aircraft fault knowledge. 2011 IEEE 3rd International Conference on Communication Software and Networks (pp. 320–324). IEEE. https://doi.org/10.1109/ICCSN.2011.6014279

    Chapter  Google Scholar 

  • Zhao, X., Ke, W., Hu, Z., Zhou, C., & Zhao, L. (2015). Research on Fault Diagnosis Knowledge Representation Method of Hydraulic System Based on Ontology-Production Rule. Journal of the Chinese Society of Mechanical Engineers, 36(2), 175–181.

    Article  Google Scholar 

  • Zhou, Q., Yan, P., Liu, H., & Xin, Y. (2019). A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis. Journal of Intelligent Manufacturing, 30(4), 1693–1715. https://doi.org/10.1007/s10845-017-1351-1

    Article  Google Scholar 

  • Zhou, Q., Yan, P., Liu, H., Xin, Y., & Chen, Y. (2018). Research on a configurable method for fault diagnosis knowledge of machine tools and its application. The International Journal of Advanced Manufacturing Technology, 95, 937–960. https://doi.org/10.1007/s00170-017-1268-z

    Article  Google Scholar 

  • Zhou, Q., Yan, P., & Xin, Y. (2017). Research on a knowledge modelling methodology for fault diagnosis of machine tools based on formal semantics. Advanced Engineering Informatics, 32, 92–112. https://doi.org/10.1016/j.aei.2017.01.002

    Article  Google Scholar 

  • Zhou, A., Yu, D., & Zhang, W. (2015). A research on intelligent fault diagnosis of wind turbines based on ontology and FMECA. Advanced Engineering Informatics, 29(1), 115–125. https://doi.org/10.1016/j.aei.2014.10.001

    Article  Google Scholar 

  • Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. https://doi.org/10.1016/j.cie.2020.106889

    Article  Google Scholar 

Download references

Acknowledgements

This research work has been conducted within the framework of the MODAPTO project (MODULAR MANUFACTURING AND DISTRIBUTED CONTROL VIA INTEROPERABLE DIGITAL TWINS), which has received funding from the European Union’s Horizon Europe research and innovation program under grant agreement No. 101091996.

Funding

This work was supported by the MODAPTO project (MODULAR MANUFACTURING AND DISTRIBUTED CONTROL VIA INTEROPERABLE DIGITAL TWINS) funded by the European Union’s Horizon 2022 (grant agreement No 101091996).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed to the conceptualisation of the article, the literature search and data analysis, the writing, the review and the editing of the paper.

Corresponding author

Correspondence to Chiara Franciosi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Table 3.

Table 3 Classification of selected papers with respect to the extraction criteria (ii), (iii) and (iv)

Appendix 2

See Table 4.

Table 4 Classification of selected papers with respect to prognostics and health management process in which the ontology is adopted and with respect to operational/tactical/strategic decisions made.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franciosi, C., Eslami, Y., Lezoche, M. et al. Ontologies for prognostics and health management of production systems: overview and research challenges. J Intell Manuf (2024). https://doi.org/10.1007/s10845-024-02347-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10845-024-02347-w

Keywords

Navigation