Skip to main content
Log in

Image deep learning in fault diagnosis of mechanical equipment

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

With the development of industry, more and more crucial mechanical machinery generate wildness demand of effective fault diagnosis to ensure the safe operation. Over the past few decades, researchers have explored and developed a variety of approaches. In recent years, fault diagnosis based on deep learning has developed rapidly, which achieved satisfied results in the filed of mechanical equipment fault diagnosis. However, there is few review to systematically summarize and sort out these special image deep learning methods. In order to fill this gap, this paper concentrates on reviewing comprehensively the development of special image deep learning for mechanical equipment fault diagnosis in past 5 years. In general, a typical image fault diagnosis based on fault image deep learning generally consists of data acquisition, signal processing, model construction, feature learning and decision-making. Firstly, the method of signal preprocessing is introduced, and several common methods of converting signals into images are briefly compared and analyzed. Then, the principles and variants of deep learning models are expounded. Further more, the difficulties and challenges encountered at this stage are summarized. Last but not least, the future development and potential trends of the work are concluded, and it hoped that this work will facilitate and inspire further exploration for researchers in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  • Antoni, J. (2006). The spectral kurtosis: A useful tool for characterising non-stationary signals. Mechanical Systems and Signal Processing, 20, 282–307.

    Article  Google Scholar 

  • Ayas, S., & Ayas, M. S. (2022). A novel bearing fault diagnosis method using deep residual learning network. Multimedia Tools and Applications, 81, 22407–22423.

    Article  Google Scholar 

  • Chang, Y., Chen, J., Wu, W., Pan, T., Zhou, Z., & He, S. (2022). Intelligent fault quantitative identification for industrial internet of things (IIoT) via a novel deep dual reinforcement learning model accompanied with insufficient samples. IEEE Internet of Things Journal, 9, 19811–19822.

    Article  Google Scholar 

  • Chao, Q., Tao, J., Wei, X., & Liu, C. (2020). Identification of cavitation intensity for high-speed aviation hydraulic pumps using 2D convolutional neural networks with an input of RGB-based vibration data. Measurement Science and Technology, 31, 105102.

    Article  Google Scholar 

  • Chao, Q., Wei, X., Lei, J., Tao, J., & Liu, C. (2022). Improving accuracy of cavitation severity recognition in axial piston pumps by denoising time-frequency images. Measurement Science and Technology, 33, 055116.

    Article  Google Scholar 

  • Che, C., Wang, H., Ni, X., & Lin, R. (2021). Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis. Measurement, 173, 108655.

    Article  Google Scholar 

  • Chen, B., Liu, T., He, C., Liu, Z., & Zhang, L. (2022). Fault diagnosis for limited annotation signals and strong noise based on interpretable attention mechanism. IEEE Sensors Journal, 22, 11865–11880.

    Article  Google Scholar 

  • Chen, W., Qiu, Y., Feng, Y., Li, Y., & Kusiak, A. (2021). Diagnosis of wind turbine faults with transfer learning algorithms. Renewable Energy, 163, 2053–2067.

    Article  Google Scholar 

  • Chen, Z., Gryllias, K., & Li, W. (2020). Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network. IEEE Transactions on Industrial Informatics, 16, 339–349.

    Article  Google Scholar 

  • Chen, Z., Mauricio, A., Li, W., & Gryllias, K. (2020). A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks. Mechanical Systems and Signal Processing, 140, 106683.

    Article  Google Scholar 

  • Choudhary, A., Mian, T., & Fatima, S. (2021). Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images. Measurement, 176, 109196.

    Article  Google Scholar 

  • Deng, W., Liu, H., Xu, J., Zhao, H., & Song, Y. (2020). An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Transactions on Instrumentation and Measurement, 69, 7319–7327.

    Article  Google Scholar 

  • Deng, W., Yao, R., Zhao, H., Yang, X., & Li, G. (2019). A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Computing, 23, 2445–2462.

    Article  Google Scholar 

  • Ding, X., & He, Q. (2017). Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 66, 1926–1935.

    Article  Google Scholar 

  • Ding, Y., Jia, M., Miao, Q., et al. (2022). A novel time-frequency transformer based on self-attention mechanism and its application in fault diagnosis of rolling bearings. Mechanical Systems and Signal Processing, 168, 108616.

    Article  Google Scholar 

  • Dong, S., Li, Y., Zhu, P., Pei, X., Pan, X., Xu, X., Liu, L., Xing, B., & Hu, X. (2022). Rolling bearing performance degradation assessment based on singular value decomposition-sliding window linear regression and improved deep learning network in noisy environment. Measurement Science and Technology, 33, 045015.

    Article  Google Scholar 

  • Duan, L., Xie, M., Wang, J., & Bai, T. (2018). Deep learning enabled intelligent fault diagnosis: Overview and applications. Journal of Intelligent & Fuzzy Systems, 35, 5771–5784.

    Article  Google Scholar 

  • Eren, L., Ince, T., & Kiranyaz, S. (2019). A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier. Journal of Signal Processing Systems, 91, 179–189.

    Article  Google Scholar 

  • Fan, S., Zhang, X., & Song, Z. (2021). Imbalanced sample selection with deep reinforcement learning for fault diagnosis. IEEE Transactions on Industrial Informatics, 18, 2518–2527.

    Article  Google Scholar 

  • Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., & Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine Learning Research, 17, 1–35.

    Google Scholar 

  • Gao, H., Zhang, Y., Lv, W., Yin, J., Qasim, T., & Wang, D. (2022). A deep convolutional generative adversarial networks-based method for defect detection in small sample industrial parts images. Applied Sciences, 12, 6569.

    Article  Google Scholar 

  • Gao, Z., Yang, G., Li, E., & Liang, Z. (2021). Novel feature fusion module-based detector for small insulator defect detection. IEEE Sensors Journal, 21, 16807–16814.

    Article  Google Scholar 

  • Geng, Y., Wang, Z., Jia, L., Qin, Y., & Chen, X. (2020). Bogie fault diagnosis under variable operating conditions based on fast kurtogram and deep residual learning towards imbalanced data. Measurement, 166, 108191.

    Article  Google Scholar 

  • Grover, C., & Turk, N. (2022). A novel fault diagnostic system for rolling element bearings using deep transfer learning on bispectrum contour maps. Engineering Science and Technology-an International Journal, 31, 101049.

    Article  Google Scholar 

  • Guo, D., Zhong, M., Ji, H., Liu, Y., & Yang, R. (2018). A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors. Neurocomputing, 319, 155–163.

    Article  Google Scholar 

  • Guo, J., Wu, J., Zhang, S., Long, J., Chen, W., Cabrera, D., & Li, C. (2020). Generative transfer learning for intelligent fault diagnosis of the wind turbine gearbox. Sensors, 20, 1361.

    Article  Google Scholar 

  • Han, B., Zhang, H., Sun, M., & Wu, F. (2021). A new bearing fault diagnosis method based on capsule network and Markov transition field/Gramian angular field. Sensors, 21, 7762.

    Article  Google Scholar 

  • Han, T., Liu, C., Yang, W., & Jiang, D. (2019). A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowledge-based systems, 165, 474–487.

    Article  Google Scholar 

  • Hasan, M. J., Islam, M. M., & Kim, J. M. (2019). Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions. Measurement, 138, 620–631.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

  • He, Q. (2013). Vibration signal classification by wavelet packet energy flow manifold learning. Journal of Sound and Vibration, 332, 1881–1894.

    Article  Google Scholar 

  • Hongwei, F., Ceyi, X., Jiateng, M., Xiangang, C., & Xuhui, Z. (2023). A novel intelligent diagnosis method of rolling bearing and rotor composite faults based on vibration signal-to-image mapping and CNN-SVM. Measurement Science and Technology, 34, 044008.

    Article  Google Scholar 

  • Hou, R., Chen, J., Feng, Y., Liu, S., He, S., & Zhou, Z. (2022). Contrastive-weighted self-supervised model for long-tailed data classification with vision transformer augmented. Mechanical Systems and Signal Processing, 177, 109174.

    Article  Google Scholar 

  • Huang, X., Qi, G., Mazur, N., & Chai, Y. (2022). Deep residual networks-based intelligent fault diagnosis method of planetary gearboxes in cloud environments. Simulation Modelling Practice and Theory, 116, 102469.

    Article  Google Scholar 

  • Jiang, X., Cheng, X., Shi, J., Huang, W., Shen, C., & Zhu, Z. (2018). A new \(l_{0}\)-norm embedded MED method for roller element bearing fault diagnosis at early stage of damage. Measurement, 127, 414–424.

    Article  Google Scholar 

  • Jiao, J., Zhao, M., Lin, J., & Liang, K. (2020). A comprehensive review on convolutional neural network in machine fault diagnosis. Neurocomputing, 417, 36–63.

    Article  Google Scholar 

  • Jing, L., Zhao, M., Li, P., & Xu, X. (2017). A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement, 111, 1–10.

    Article  Google Scholar 

  • Karabacak, Y. E., Gürsel özmen, N., & Gümüşel, L. (2020). Worm gear condition monitoring and fault detection from thermal images via deep learning method. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 22, 544–556.

    Article  Google Scholar 

  • Kennel, M. B., Brown, R., & Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45, 3403.

    Article  Google Scholar 

  • Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241–265.

    Article  Google Scholar 

  • Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021). 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151, 107398.

    Article  Google Scholar 

  • Kumar, A., Gandhi, C. P., Zhou, Y., Kumar, R., & Xiang, J. (2020). Latest developments in gear defect diagnosis and prognosis: A review. Measurement, 158, 107735.

    Article  Google Scholar 

  • Kumar, P., & Hati, A. S. (2021). Deep convolutional neural network based on adaptive gradient optimizer for fault detection in SCIM. ISA Transactions, 111, 350–359.

    Article  Google Scholar 

  • Lampert, C. H., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object classes by between-class attribute transfer. In 2009 IEEE conference on computer vision and pattern recognition, Miami, Florida, June 20–25 (pp. 951–958).

  • Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., & Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587.

    Article  Google Scholar 

  • Li, C., Li, S., Zhang, A., He, Q., Liao, Z., & Hu, J. (2021). Meta-learning for few-shot bearing fault diagnosis under complex working conditions. Neurocomputing, 439, 197–211.

    Article  Google Scholar 

  • Li, J., Liu, H., Liang, J., Dong, J., Pang, B., Hao, Z., & Zhao, X. (2022). Bearing fault diagnosis based on an enhanced image representation method of vibration signal and conditional super token transformer. Entropy, 24, 1055.

    Article  Google Scholar 

  • Li, J., Liu, Y., & Li, Q. (2022). Generative adversarial network and transfer-learning-based fault detection for rotating machinery with imbalanced data condition. Measurement Science and Technology,33, 045103.

  • Li, J., Liu, Y., & Li, Q. (2022). Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method. Measurement, 189, 110500.

    Article  Google Scholar 

  • Li, X., Li, X., & Ma, H. (2020). Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mechanical Systems and Signal Processing, 143, 106825.

    Article  Google Scholar 

  • Li, X., Zheng, J., Li, M., Ma, W., & Hu, Y. (2022). One-shot neural architecture search for fault diagnosis using vibration signals. Expert Systems with Applications, 190, 116027.

    Article  Google Scholar 

  • Li, Y., Wan, H., & Jiang, L. (2022). Alignment subdomain-based deep convolutional transfer learning for machinery fault diagnosis under different working conditions. Measurement Science and Technology, 33, 055006.

    Article  Google Scholar 

  • Li, Y., Yu, F., Cai, Q., Yuan, K., Wan, R., Li, X., Qian, M., Liu, P., Guo, J., Yu, J., Zheng, T., Yan, H., Hou, P., Feng, Y., Wang, S., & Ding, L. (2018). Image fusion of fault detection in power system based on deep learning. Cluster Computing, 22, 9435–9443.

    Article  Google Scholar 

  • Liang, H., Cao, J., & Zhao, X. (2022). Average descent rate singular value decomposition and two-dimensional residual neural network for fault diagnosis of rotating machinery. IEEE Transactions on Instrumentation and Measurement, 71, 1–16.

    Google Scholar 

  • Liang, X., Wang, Y., & Gu, H. (2022). A mechanical fault diagnosis model of on-load tap changer based on same-source heterogeneous data fusion. IEEE Transactions on Instrumentation and Measurement, 71, 1–9.

    Google Scholar 

  • Lingli, J., Shuhui, L., Xuejun, L., Jiale, L., & Dalian, Y. (2022). Fault diagnosis of a planetary gearbox based on a local bi-spectrum and a convolutional neural network. Measurement Science and Technology, 33, 045008.

    Article  Google Scholar 

  • Liu, H., Zhou, J., Zheng, Y., Jiang, W., & Zhang, Y. (2018). Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA Transactions, 77, 167–178.

    Article  Google Scholar 

  • Liu, R., Yang, B., Zio, E., & Chen, X. (2018). Artificial intelligence for fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 108, 33–47.

    Article  Google Scholar 

  • Lu, S., Chai, H., Sahoo, A., & Phung, B. T. (2020). Condition monitoring based on partial discharge diagnostics using machine learning methods: A comprehensive state-of-the-art review. IEEE Transactions on Dielectrics and Electrical Insulation, 27, 1861–1888.

    Article  Google Scholar 

  • Mao, G., Zhang, Z., Qiao, B., & Li, Y. (2022). Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions. Entropy, 24, 119.

    Article  Google Scholar 

  • Mitiche, I., Jenkins, M. D., Boreham, P., Nesbitt, A., & Morison, G. (2021). An expert system for EMI data classification based on complex bispectrum representation and deep learning methods. Expert Systems with Applications, 171, 114568.

    Article  Google Scholar 

  • Mohanty, S., Gupta, K. K., & Raju, K. S. (2018). Hurst based vibro-acoustic feature extraction of bearing using EMD and VMD. Measurement, 117, 200–220.

    Article  Google Scholar 

  • Monday, H. N., Li, J., Nneji, G. U., Nahar, S., Hossin, M. A., Jackson, J., & Oluwasanmi, A. (2022). A wavelet convolutional capsule network with modified super resolution generative adversarial network for fault diagnosis and classification. Complex & Intelligent Systems, 8, 4831–4847.

    Article  Google Scholar 

  • Naderi, E., & Khorasani, K. (2018). Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors. Mechanical Systems and Signal Processing, 100, 415–438.

    Article  Google Scholar 

  • Nikias, C. L., & Mendel, J. M. (1993). Signal processing with higher-order spectra. IEEE Signal Processing Magazine, 10, 10–37.

    Article  Google Scholar 

  • Nikias, C. L., & Raghuveer, M. R. (1987). Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 75, 869–891.

    Article  Google Scholar 

  • Pan, J., Zi, Y., Chen, J., Zhou, Z., & Wang, B. (2017). LiftingNet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification. IEEE Transactions on Industrial Electronics, 65, 4973–4982.

    Article  Google Scholar 

  • Pan, S. J., Kwok, J. T., & Yang, Q. (2008). Transfer learning via dimensionality reduction. In Proceedings of the twenty-third AAAI conference on artificial intelligence, AAAI 2008, Chicago, Illinois, USA, July 13–17 (pp. 677–682).

  • Pan, S. J., Tsang, I. W., Kwok, J. T., & Yang, Q. (2010). Domain adaptation via transfer component analysis. IEEE Transactions on Neural Networks, 22, 199–210.

    Article  Google Scholar 

  • Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22, 1345–1359.

    Article  Google Scholar 

  • Pang, X., Xue, X., Jiang, W., & Lu, K. (2021). An investigation into fault diagnosis of planetary gearboxes using a bispectrum convolutional neural network. IEEE/ASME Transactions on Mechatronics, 26, 2027–2037.

    Article  Google Scholar 

  • Pei, X., Su, S., Jiang, L., Chu, C., Gong, L., & Yuan, Y. (2022). Research on rolling bearing fault diagnosis method based on generative adversarial and transfer learning. Processes, 10, 1443.

    Article  Google Scholar 

  • Peng, T., Shen, C., Sun, S., & Wang, D. (2021). Fault feature extractor based on bootstrap your own latent and data augmentation algorithm for unlabeled vibration signals. IEEE Transactions on Industrial Electronics, 69, 9547–9555.

    Article  Google Scholar 

  • Qian, W., Li, S., & Lu, J. (2022). Deep sparse topology network for robust bearing fault diagnosis by maximizing prior knowledge functions. IEEE Transactions on Industrial Informatics, 18, 8540–8550.

    Article  Google Scholar 

  • Qian, W., Li, S., Yao, T., & Xu, K. (2021). Discriminative feature-based adaptive distribution alignment (DFADA) for rotating machine fault diagnosis under variable working conditions. Applied Soft Computing, 99, 106886.

    Article  Google Scholar 

  • Ren, Z., Qian, K., Zhang, Z., Pandit, V., Baird, A., & Schuller, B. (2018). Deep scalogram representations for acoustic scene classification. IEEE/CAA Journal of Automatica Sinica, 5, 662–669.

    Article  Google Scholar 

  • Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules. In 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA.

  • San Martin, G., Lopez Droguett, E., & Meruane, V., & das Chagas Moura, M. (2019). Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis. Structural Health Monitoring-an International Journal,18, 1092–1128.

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520).

  • Sang, K. X., Shang, J., & Lin, T. R. (2022). Synchroextracting transform and deep residual network for varying speed bearing fault diagnostic. Journal of Vibration Engineering & Technologies, 11, 343–353.

    Article  Google Scholar 

  • Saufi, S. R., Ahmad, Z. A. B., Leong, M. S., & Lim, M. H. (2020). Gearbox fault diagnosis using a deep learning model with limited data sample. IEEE Transactions on Industrial Informatics, 16, 6263–6271.

    Article  Google Scholar 

  • Shao, H., Xia, M., Han, G., Zhang, Y., & Wan, J. (2021). Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images. IEEE Transactions on Industrial Informatics, 17, 3488–3496.

    Article  Google Scholar 

  • Shao, S., McAleer, S., Yan, R., & Baldi, P. (2019). Highly accurate machine fault diagnosis using deep transfer learning. IEEE Transactions on Industrial Informatics, 15, 2446–2455.

    Article  Google Scholar 

  • Shao, S., Wang, P., & Yan, R. (2019). Generative adversarial networks for data augmentation in machine fault diagnosis. Computers in Industry, 106, 85–93.

    Article  Google Scholar 

  • Shao, S., Yan, R., Lu, Y., Wang, P., & Gao, R. X. (2020). DCNN-based multi-signal induction motor fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 69, 2658–2669.

    Article  Google Scholar 

  • Shen, L., Tao, H., Ni, Y., Wang, Y., & Stojanovic, V. (2023). Improved YOLOv3 model with feature map cropping for multi-scale road object detection. Measurement Science and Technology, 34, 045406.

    Article  Google Scholar 

  • Shu, Q., Lu, S., Xia, M., Ding, J., Niu, J., & Liu, Y. (2020). Enhanced feature extraction method for motor fault diagnosis using low-quality vibration data from wireless sensor networks. Measurement Science and Technology, 31, 045016.

    Article  Google Scholar 

  • Si, J., Shi, H., Chen, J., & Zheng, C. (2021). Unsupervised deep transfer learning with moment matching: A new intelligent fault diagnosis approach for bearings. Measurement, 172, 108827.

    Article  Google Scholar 

  • Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. In 31st conference on neural information processing systems (NIPS), Long Beach, CA, USA.

  • Song, J., Lee, Y. C., & Lee, J. (2022). Deep generative model with time series-image encoding for manufacturing fault detection in die casting process. Journal of Intelligent Manufacturing, 1–14.

  • Soother, D. K., Kalwar, I. H., Hussain, T., Chowdhry, B. S., Ujjan, S. M., & Memon, T. D. (2021). A novel method based on UNET for bearing fault diagnosis. Computers, Materials & Continua, 69, 393–408.

    Article  Google Scholar 

  • Stetco, A., Dinmohammadi, F., Zhao, X., Robu, V., Flynn, D., Barnes, M., John, K., & Nenadic, G. (2019). Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy, 133, 620–635.

    Article  Google Scholar 

  • Sun, H., Wang, C., & Cao, X. (2022). An adaptive anti-noise gear fault diagnosis method based on attention residual prototypical network under limited samples. Applied Soft Computing, 125, 109120.

    Article  Google Scholar 

  • Sun, J., Yan, C., & Wen, J. (2017). Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning. IEEE Transactions on Instrumentation and Measurement, 67, 185–195.

    Article  Google Scholar 

  • Sun, Y., & Li, S. (2022). Bearing fault diagnosis based on optimal convolution neural network. Measurement, 190, 110702.

    Article  Google Scholar 

  • Tang, S., Yuan, S., Zhu, Y., & Li, G. (2020). An integrated deep learning method towards fault diagnosis of hydraulic axial piston pump. Sensors, 20, 6576.

    Article  Google Scholar 

  • Tang, S., Zhu, Y., & Yuan, S. (2022). Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization. ISA Transactions, 129, 555–563.

    Article  Google Scholar 

  • Tang, X., Xu, Y., Sun, X., Liu, Y., Jia, Y., Gu, F., & Ball, A. D. (2023). Intelligent fault diagnosis of helical gearboxes with compressive sensing based non-contact measurements. ISA Transactions, 133, 559–574.

    Article  Google Scholar 

  • Tang, Z., Liu, X., Sun, K., & Bo, L. (2022). Fault diagnosis of rotating machinery under multiple operating conditions generalization: A representation gradient muting paradigm. IEEE Transactions on Instrumentation and Measurement, 71, 1–10.

    Article  Google Scholar 

  • Tao, H., Cheng, L., Qiu, J., & Stojanovic, V. (2022). Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic. Measurement Science and Technology, 33, 115005.

    Article  Google Scholar 

  • Tran, M. Q., Liu, M. K., Tran, Q. V., & Nguyen, T. K. (2022). Effective fault diagnosis based on wavelet and convolutional attention neural network for induction motors. IEEE Transactions on Instrumentation and Measurement, 71, 1–13.

    Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. In 31st conference on neural information processing systems (NIPS), Long Beach, CA, USA.

  • Wang, B., Wang, B., & Ning, Y. (2022). A novel transfer learning fault diagnosis method for rolling bearing based on feature correlation matching. Measurement Science and Technology, 33, 125006.

    Article  Google Scholar 

  • Wang, C., Sun, H., & Cao, X. (2021). Construction of the efficient attention prototypical net based on the time-frequency characterization of vibration signals under noisy small sample. Measurement, 179, 109412.

    Article  Google Scholar 

  • Wang, H., Li, S., Song, L., Cui, L., & Wang, P. (2019). An enhanced intelligent diagnosis method based on multi-sensor image fusion via improved deep learning network. IEEE Transactions on Instrumentation and measurement, 69, 2648–2657.

    Article  Google Scholar 

  • Wang, H., Xu, J., Sun, C., Yan, R., & Chen, X. (2022). Intelligent fault diagnosis for planetary gearbox using time-frequency representation and deep reinforcement learning. IEEE/ASME Transactions on Mechatronics, 27, 985–998.

    Article  Google Scholar 

  • Wang, H., Xu, J., Yan, R., & Gao, R. X. (2020). A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN. IEEE Transactions on Instrumentation and Measurement, 69, 2377–2389.

    Article  Google Scholar 

  • Wang, T., Han, Q., Chu, F., & Feng, Z. (2019). Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: A review. Mechanical Systems and Signal Processing, 126, 662–685.

    Article  Google Scholar 

  • Wang, Z., & Oates, T. (2015). Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In Workshops at the twenty-ninth AAAI conference on artificial intelligence, Menlo Park, CA, USA. AAAI.

  • Wei, H., Zhang, Q., Shang, M., & Gu, Y. (2021). Extreme learning Machine-based classifier for fault diagnosis of rotating Machinery using a residual network and continuous wavelet transform. Measurement, 183, 109864.

    Article  Google Scholar 

  • Wen, L., Li, X., & Gao, L. (2019). A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Computing and Applications, 32, 6111–6124.

    Article  Google Scholar 

  • Wen, L., Li, X., Gao, L., & Zhang, Y. (2018). A new convolutional neural network-based data-driven fault diagnosis method. IEEE Transactions on Industrial Electronics, 65, 5990–5998.

    Article  Google Scholar 

  • Xiao, Q., Li, S., Zhou, L., & Shi, W. (2022). Improved variational mode decomposition and CNN for intelligent rotating machinery fault diagnosis. Entropy, 24, 908.

    Article  Google Scholar 

  • Xie, T., Huang, X., & Choi, S. K. (2022). Intelligent Mechanical Fault Diagnosis Using Multisensor Fusion and Convolution Neural Network. IEEE Transactions on Industrial Informatics, 18, 3213–3223.

    Article  Google Scholar 

  • Xing, S., Lei, Y., Wang, S., Lu, N., & Li, N. (2022). A label description space embedded model for zero-shot intelligent diagnosis of mechanical compound faults. Mechanical Systems and Signal Processing, 162, 108036.

    Article  Google Scholar 

  • Xu, G., Liu, M., Jiang, Z., Shen, W., & Huang, C. (2020). Online fault diagnosis method based on transfer convolutional neural networks. IEEE Transactions on Instrumentation and Measurement, 69, 509–520.

    Article  Google Scholar 

  • Xu, G., Liu, M., Jiang, Z., Söffker, D., & Shen, W. (2019). Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning. Sensors, 19, 1088.

    Article  Google Scholar 

  • Xu, X., Tao, Z., Ming, W., An, Q., & Chen, M. (2020). Intelligent monitoring and diagnostics using a novel integrated model based on deep learning and multi-sensor feature fusion. Measurement, 165, 108086.

    Article  Google Scholar 

  • Xu, Z., Tang, G., & Pang, B. (2022). An infrared thermal image few-shot learning method based on CAPNet and its application to induction motor fault diagnosis. IEEE Sensors Journal, 22, 16440–16450.

    Article  Google Scholar 

  • Xu, Z., Zhang, C., Liu, S., Zhang, W., & Zhang, Y. (2022). Research on fault diagnosis of rolling bearings in roller-to-roller printing units based on Siamese network. Journal of Low Frequency Noise, Vibration and Active Control, 42, 403–419.

    Article  Google Scholar 

  • Yang, B., Lei, Y., Jia, F., & Xing, S. (2019). An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mechanical Systems and Signal Processing, 122, 692–706.

    Article  Google Scholar 

  • Yang, H., Li, X., & Zhang, W. (2022). Interpretability of deep convolutional neural networks on rolling bearing fault diagnosis. Measurement Science and Technology, 33, 055005.

    Article  Google Scholar 

  • Yang, J., Liu, J., Xie, J., Wang, C., & Ding, T. (2021). Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples. IEEE Transactions on Instrumentation and Measurement, 70, 1–12.

    Article  Google Scholar 

  • Yan, Z., Miyamoto, A., & Jiang, Z. (2009). Frequency slice wavelet transform for transient vibration response analysis. Mechanical Systems and Signal Processing, 23, 1474–1489.

    Article  Google Scholar 

  • Ye, L., Ma, X., & Wen, C. (2021). Rotating machinery fault diagnosis method by combining time-frequency domain features and CNN knowledge transfer. Sensors, 21, 8168.

    Article  Google Scholar 

  • Ye, Z., & Yi, Q. (2022). Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 236, 2559–2573.

    Article  Google Scholar 

  • Yoo, Y., & Jeong, S. (2022). Vibration analysis process based on spectrogram using gradient class activation map with selection process of CNN model and feature layer. Displays: Technology and Applications, 73, 102233.

    Article  Google Scholar 

  • Yu, C., Ning, Y., Qin, Y., Su, W., & Zhao, X. (2021). Multi-label fault diagnosis of rolling bearing based on meta-learning. Neural Computing & Applications, 33, 5393–5407.

    Article  Google Scholar 

  • Zhang, B., Zhang, S., & Li, W. (2019). Bearing performance degradation assessment using long short-term memory recurrent network. Computers in Industry, 106, 14–29.

    Article  Google Scholar 

  • Zhang, L., Lv, Y., Huang, W., & Yi, C. (2022). Bearing fault diagnosis under various operation conditions using synchrosqueezing transform and improved two-dimensional convolutional neural network. Measurement Science and Technology, 33, 085002.

    Article  Google Scholar 

  • Zhang, T., Chen, J., Li, F., Zhang, K., Lv, H., He, S., & Xu, E. (2022). Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions. ISA Transactions, 119, 152–171.

    Article  Google Scholar 

  • Zhang, W., Li, X., Ma, H., Luo, Z., & Li, X. (2021). Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning. IEEE Transactions on Industrial Informatics, 17, 7445–7455.

    Article  Google Scholar 

  • Zhang, W., Wang, Z., & Li, X. (2023). Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis. Reliability Engineering & System Safety, 229, 108885.

    Article  Google Scholar 

  • Zhang, Y., Li, X., Gao, L., Chen, W., & Li, P. (2020). Ensemble deep contractive auto-encoders for intelligent fault diagnosis of machines under noisy environment. Knowledge-Based Systems, 196, 105764.

    Article  Google Scholar 

  • Zhang, Y., Xing, K., Bai, R., Sun, D., & Meng, Z. (2020). An enhanced convolutional neural network for bearing fault diagnosis based on time-frequency image. Measurement, 157, 107667.

    Article  Google Scholar 

  • Zhao, H., Liu, J., Chen, H., Chen, J., Li, Y., Xu, J., & Deng, W. (2022). Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network. IEEE Transactions on Reliability, 1–11.

  • Zhao, J., Yang, S., Li, Q., Liu, Y., Gu, X., & Liu, W. (2021). A new bearing fault diagnosis method based on signal-to-image mapping and convolutional neural network. Measurement, 176, 109088.

    Article  Google Scholar 

  • Zhao, M., Kang, M., Tang, B., & Pecht, M. (2017). Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes. IEEE Transactions on Industrial Electronics, 65, 4290–4300.

    Google Scholar 

  • Zhao, R., Wang, D., Yan, R., Mao, K., Shen, F., & Wang, J. (2017). Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Transactions on Industrial Electronics, 65, 1539–1548.

    Article  Google Scholar 

  • Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213–237.

    Article  Google Scholar 

  • Zhong, B., Zhao, M., Zhong, S., Lin, L., & Wang, L. (2022). Mechanical compound fault diagnosis via suppressing intra-class dispersions: A deep progressive shrinkage perspective. Measurement, 199, 111433.

    Article  Google Scholar 

  • Zhong, H., Lv, Y., Yuan, R., & Yang, D. (2022). Bearing fault diagnosis using transfer learning and self-attention ensemble lightweight convolutional neural network. Neurocomputing, 501, 765–777.

    Article  Google Scholar 

  • Zhou, J., Zheng, L., Wang, Y., Wang, C., & Gao, R. X. (2022). Automated model generation for machinery fault diagnosis based on reinforcement learning and neural architecture search. IEEE Transactions on Instrumentation and Measurement, 71, 1–12.

    Google Scholar 

  • Zhou, Q., Li, Y., Tian, Y., & Jiang, L. (2020). A novel method based on nonlinear auto-regression neural network and convolutional neural network for imbalanced fault diagnosis of rotating machinery. Measurement, 161, 107880.

    Article  Google Scholar 

  • Zhu, J., Chen, N., & Shen, C. (2020). A new deep transfer learning method for bearing fault diagnosis under different working conditions. IEEE Sensors Journal, 20, 8394–8402.

    Article  Google Scholar 

  • Zhu, W., Ma, Y., Benton, M. G., Romagnoli, J. A., & Zhan, Y. (2019). Deep learning for pyrolysis reactor monitoring: From thermal imaging toward smart monitoring system. AIChE Journal, 65, 582–591.

    Article  Google Scholar 

  • Zhu, Z., Peng, G., Chen, Y., & Gao, H. (2019). A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis. Neurocomputing, 323, 62–75.

    Article  Google Scholar 

  • Zou, Y., Liu, Y., Deng, J., Jiang, Y., & Zhang, W. (2021). A novel transfer learning method for bearing fault diagnosis under different working conditions. Measurement, 171, 108767.

    Article  Google Scholar 

  • Zou, Y., Zhang, Y., & Mao, H. (2021). Fault diagnosis on the bearing of traction motor in high-speed trains based on deep learning. Alexandria Engineering Journal, 60, 1209–1219.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation (NNSF) of China under Grant 61603149, by Shandong Key Research and Invention Program under Grant 2019GSF111046.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Sun, Y. & Wang, X. Image deep learning in fault diagnosis of mechanical equipment. J Intell Manuf (2023). https://doi.org/10.1007/s10845-023-02176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10845-023-02176-3

Keywords

Navigation