Skip to main content

Advertisement

Log in

Industry 4.0: contributions of holonic manufacturing control architectures and future challenges

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The flexibility claimed by the next generation production systems induces a deep modification of the behaviour and the core itself of the control systems. Over-connectivity and data management abilities targeted by Industry 4.0 paradigm enable the emergence of more flexible and reactive control systems, based on the cooperation of autonomous and connected entities in the decision-making process. From most relevant articles extracted from existing literature, a list of 10 key enablers for Industry 4.0 is first presented. During the last 20 years, the holonic paradigm has become a major paradigm of Intelligent Manufacturing Systems. After the presentation of the holonic paradigm and holon properties, this article highlights how historical and current holonic control architectures can partly fulfil Industry 4.0 key enablers. The remaining unfulfilled key enablers are then the subject of an extensive discussion on the remaining research perspectives on holonic architectures needed to achieve a complete support of Industry 4.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://www.scopus.com/authid/detail.uri?authorId=7004590058.

References

  • Akella, R., Tang, H., & McMillin, B. M. (2010). Analysis of information flow security in cyber-physical systems. International Journal of Critical Infrastructure Protection, 3(3–4), 157–173. https://doi.org/10.1016/j.ijcip.2010.09.001.

    Article  Google Scholar 

  • Almada-Lobo, F. (2016). The Industry 40 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 3(4), 16–21. https://doi.org/10.24840/2183-0606_003.004_0003.

    Article  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2016). Big data and virtualization for manufacturing cyber-physical systems: A survey of the current status and future outlook. Computers in Industry, 81, 128–137. https://doi.org/10.1016/j.compind.2016.02.004.

    Article  Google Scholar 

  • Babiceanu, R. F., & Seker, R. (2019). Cyber resilience protection for industrial internet of things: A software-defined networking approach. Computers in Industry, 104, 47–58. https://doi.org/10.1016/j.compind.2018.10.004.

    Article  Google Scholar 

  • Barbosa, J., Leitão, P., Adam, E., & Trentesaux, D. (2015). Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution. Computers in Industry, 66, 99–111. https://doi.org/10.1016/j.compind.2014.10.011.

    Article  Google Scholar 

  • Barbosa, J., Leitao, P., Trentesaux, D., Colombo, A. W., & Karnouskos, S. (2016). Cross benefits from cyber-physical systems and intelligent products for future smart industries. In IEEE international conference on industrial informatics (INDIN) (pp. 504–509). Poitiers. https://doi.org/10.1109/INDIN.2016.7819214.

  • Bellifemine, F., Caire, G., & Greenwood, D. (2007). Developing multi-agent systems with JADE. https://doi.org/10.1002/9780470058411

  • Bénaben, F., Touzi, J., Rajsiri, V., Truptil, S., Lorré, J.-P., & Pingaud, H. (2008). Mediation information system design in a collaborative SOA context through a MDD approach. Proceedings of MDISIS, 8, 1–17.

    Google Scholar 

  • Berger, R. (2014). Industry 4.0: The new industrial revolution—How Europe will succeed. Roland Berger strategy consultants, maart, 15.

  • Bokrantz, J., Skoogh, A., Berlin, C., & Stahre, J. (2017). Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030. International Journal of Production Economics, 191, 154–169. https://doi.org/10.1016/j.ijpe.2017.06.010.

    Article  Google Scholar 

  • Borangiu, T., Răileanu, S., Berger, T., & Trentesaux, D. (2015). Switching mode control strategy in manufacturing execution systems. International Journal of Production Research, 53(7), 1950–1963. https://doi.org/10.1080/00207543.2014.935825.

    Article  Google Scholar 

  • Borangiu, T., Răileanu, S., Oltean, E. V., & Silicsteanu, A. (2019). Holonic hybrid supervised control of semi-continuous radiopharmaceutical production processes. In Y. Kondratenko, A. Chikrii, V. Gubarev, & J. Kacprzyk (Eds.), Advanced control techniques in complex engineering systems: Theory and applications (pp. 229–258). Cham: Springer.

    Chapter  Google Scholar 

  • Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(1), 37–44. https://doi.org/10.1016/j.procir.2015.02.213.

    Article  Google Scholar 

  • Bussmann, S. (1998). An agent-oriented architecture for holonic manufacturing control. In 1st international workshop on IMS (pp. 1–12). Lausanne.

  • Bussmann, S., & Sieverding, J. (2001). Holonic control of an engine assembly plant: An industrial evaluation. In 2001 IEEE international conference on systems, man and cybernetics. e-systems and e-man for cybernetics in cyberspace (Cat. No. 01CH37236) (Vol. 1, pp. 169–174).

  • Cardin, O., & L’anton, A. (2017). Proposition of an implementation framework enabling benchmarking of holonic manufacturing systems. In SOHOMA’17 workshop on service orientation in holonic and multi-agent manufacturing, studies in computational intelligence (Vol. 762, pp. 267–280).

  • Cardin, O., Trentesaux, D., Thomas, A., Castagna, P., Berger, T., & El-Haouzi, H. B. (2017). Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: State of the art and future challenges. Journal of Intelligent Manufacturing, 28(7), 1503–1517.

    Article  Google Scholar 

  • Chirn, J. L., & McFarlane, D. C. (2000). A holonic component-based approach to reconfigurable manufacturing control architecture. In International workshop on database and expert systems applications, DEXA (pp. 219–223). https://doi.org/10.1109/DEXA.2000.875030

  • Christensen, J. (1994). Holonic manufacturing systems: Initial architecture and standards directions. In Holonic manufacturing systems.

  • Dibaji, S. M., Pirani, M., Flamholz, D. B., Annaswamy, A. M., Johansson, K. H., & Chakrabortty, A. (2019). A systems and control perspective of CPS security. Annual Reviews in Control, 47, 394–411.

    Article  Google Scholar 

  • EIF. (2004). European interoperability framework—interoperable delivery of European eGovernment Services to public Administrations, Businesses and Citizens (IDABC).

  • Elhabashy, A. E., Wells, L. J., Camelio, J. A., & Woodall, W. H. (2019). A cyber-physical attack taxonomy for production systems: A quality control perspective. Journal of Intelligent Manufacturing, 30(6), 2489–2504. https://doi.org/10.1007/s10845-018-1408-9.

    Article  Google Scholar 

  • Fadil, A., Trentesaux, D., & Branger, G. (2019). Event management architecture for the monitoring and diagnosis of a fleet of trains: A case study. Journal of Modern Transportation, 27(3), 169–187.

    Article  Google Scholar 

  • Giret, A., & Botti, V. (2004). Holons and agents. Journal of Intelligent Manufacturing, 15(5), 645–659. https://doi.org/10.1023/B:JIMS.0000037714.56201.a3.

    Article  Google Scholar 

  • Giret, A., Garcia, E., & Botti, V. (2016). An engineering framework for service-oriented intelligent manufacturing systems. Computers in Industry, 81, 116–127. https://doi.org/10.1016/j.compind.2016.02.002.

    Article  Google Scholar 

  • Giménez, D. M., Vegetti, M., Leone, H. P., & Henning, G. P. (2008). PRoduct ONTOlogy: Defining product-related concepts for logistics planning activities. Computers in Industry, 59(2–3), 231–241.

    Article  Google Scholar 

  • Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for Industry 4.0 scenarios. In Annual Hawaii international conference on system sciences (pp. 3928–3937). https://doi.org/10.1109/HICSS.2016.488.

  • Jammes, F., & Smit, H. (2005). Service-oriented paradigms in industrial automation. IEEE Transactions on Industrial Informatics, 1(1), 62–70.

    Article  Google Scholar 

  • Jardim-Goncalves, R., Romero, D., & Grilo, A. (2017). Factories of the future: Challenges and leading innovations in intelligent manufacturing. International Journal of Computer Integrated Manufacturing, 30(1), 4–14. https://doi.org/10.1080/0951192X.2016.1258120.

    Article  Google Scholar 

  • Jimenez, J. F., Bekrar, A., Zambrano-Rey, G., Trentesaux, D., & Leitão, P. (2017). Pollux: A dynamic hybrid control architecture for flexible job shop systems. International Journal of Production Research, 55(15), 4229–4247. https://doi.org/10.1080/00207543.2016.1218087.

    Article  Google Scholar 

  • Jovanović, M., Zupan, S., Starbek, M., & Prebil, I. (2014). Virtual approach to holonic control of the tyre-manufacturing system. Journal of Manufacturing Systems, 33(1), 116–128. https://doi.org/10.1016/j.jmsy.2013.07.005.

    Article  Google Scholar 

  • Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion.

  • Kagermann, H., Lukas, W.-D., & Wahlster, W. (2011). Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution. VDI nachrichten, 13(11).

  • Koestler, A. (1967). The ghost in the machine. Hutchinson.

  • Koestler, A. (1979). Janus: A summing up. Bulletin of the Atomic Scientists, 35(3), 4.

    Article  Google Scholar 

  • Kusiak, A. (2019). Service manufacturing: Basic concepts and technologies. Journal of Manufacturing Systems, 52, 198–204. https://doi.org/10.1016/J.JMSY.2019.07.002.

    Article  Google Scholar 

  • Lade, P., Ghosh, R., & Srinivasan, S. (2017). Manufacturing analytics and industrial internet of things. IEEE Intelligent Systems, 32(3), 74–79. https://doi.org/10.1109/mis.2017.49.

    Article  Google Scholar 

  • Le Mortellec, A., Clarhaut, J., Sallez, Y., Berger, T., & Trentesaux, D. (2013). Embedded holonic fault diagnosis of complex transportation systems. Engineering Applications of Artificial Intelligence, 26(1), 227–240. https://doi.org/10.1016/j.engappai.2012.09.008.

    Article  Google Scholar 

  • Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. In Procedia CIRP (Vol. 38, pp. 3–7). https://doi.org/10.1016/j.procir.2015.08.026.

  • Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, 16, 3–8. https://doi.org/10.1016/j.procir.2014.02.001.

    Article  Google Scholar 

  • Leitão, P. (2009). Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence, 22(7), 979–991.

    Article  Google Scholar 

  • Leitão, P., & Restivo, F. (2006). ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Industry, 57(2), 121–130. https://doi.org/10.1016/j.compind.2005.05.005.

    Article  Google Scholar 

  • Liao, Y., Deschamps, F., Loures, E. D. F. R., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0—a systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609–3629. https://doi.org/10.1080/00207543.2017.1308576.

    Article  Google Scholar 

  • Liu, T., Sun, Y., Liu, Y., Gui, Y., Zhao, Y., Wang, D., et al. (2015). Abnormal traffic-indexed state estimation: A cyber-physical fusion approach for smart grid attack detection. Future Generation Computer Systems, 49, 94–103. https://doi.org/10.1016/j.future.2014.10.002.

    Article  Google Scholar 

  • Longo, F., Nicoletti, L., & Padovano, A. (2017). Smart operators in Industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Computers & Industrial Engineering, 113, 144–159. https://doi.org/10.1016/j.cie.2017.09.016.

    Article  Google Scholar 

  • Maoudj, A., Bouzouia, B., Hentout, A., Kouider, A., & Toumi, R. (2019). Distributed multi-agent scheduling and control system for robotic flexible assembly cells. Journal of Intelligent Manufacturing, 30(4), 1629–1644. https://doi.org/10.1007/s10845-017-1345-z.

    Article  Google Scholar 

  • Mataric, M. J. (1993). Designing emergent behaviors: From local interactions to collective intelligence. In Animals to animats 2. Proceedings of the second international conference on simulation of adaptive behavior.

  • Matsokis, A., & Kiritsis, D. (2010). An ontology-based approach for product lifecycle management. Computers in Industry, 61(8), 787–797.

    Article  Google Scholar 

  • McFarlane, D. C., & Bussmann, S. (2013). Holonic manufacturing control: Rationales, developments and open issues. In S. M. Deen (Ed.), Agent-based manufacturing. Berlin: Springer. https://doi.org/10.1007/978-3-662-05624-0_13.

    Chapter  Google Scholar 

  • Meyer, G. G., Främling, K., & Holmström, J. (2009). Intelligent products: A survey. Computers in Industry, 60(3), 137–148. https://doi.org/10.1016/j.compind.2008.12.005.

    Article  Google Scholar 

  • Mezgebe, T. T., Demesure, G., El Haouzi, H. B., Pannequin, R., & Thomas, A. (2019). CoMM: A consensus algorithm for multi-agent-based manufacturing system to deal with perturbation. The International Journal of Advanced Manufacturing Technology, 105(9), 3911–3926. https://doi.org/10.1007/s00170-019-03820-0.

    Article  Google Scholar 

  • Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP, 17, 9–13. https://doi.org/10.1016/j.procir.2014.03.115.

    Article  Google Scholar 

  • Monostori, L., Váncza, J., & Kumara, S. R. T. (2006). Agent-based systems for manufacturing. CIRP Annals-Manufacturing Technology, 55(2), 697–720.

    Article  Google Scholar 

  • Morariu, O., Morariu, C., Borangiu, T., & Răileanu, S. (2018). Manufacturing systems at scale with big data streaming and online machine learning. In T. Borangiu, D. Trentesaux, A. Thomas, & O. Cardin (Eds.), Service orientation in holonic and multi-agent manufacturing (Vol. 762, pp. 253–264)., Studies in computational intelligence Cham: Springer. https://doi.org/10.1007/978-3-319-73751-5_19.

    Chapter  Google Scholar 

  • Morariu, C., Morariu, O., Borangiu, T., & Sallez, Y. (2013). Formalized information representation for intelligent products in service-oriented manufacturing. In IFAC proceedings volumes (Vol. 46, pp. 318–323). https://doi.org/10.3182/20130522-3-BR-4036.00017

  • Morel, G., Pereira, C. E., & Nof, S. Y. (2019). Historical survey and emerging challenges of manufacturing automation modeling and control: A systems architecting perspective. Annual Reviews in Control, 47, 21–34. https://doi.org/10.1016/J.ARCONTROL.2019.01.002.

    Article  Google Scholar 

  • Mrugalska, B., & Wyrwicka, M. K. (2017). Towards lean production in Industry 4.0. Procedia Engineering, 182, 466–473. https://doi.org/10.1016/j.proeng.2017.03.135.

    Article  Google Scholar 

  • Nunes, M. L., Pereira, A. C., & Alves, A. C. (2017). Smart products development approaches for Industry 4.0. Procedia Manufacturing, 13, 1215–1222. https://doi.org/10.1016/j.promfg.2017.09.035.

    Article  Google Scholar 

  • Ouertani, M. Z., Baïna, S., Gzara, L., & Morel, G. (2011). Traceability and management of dispersed product knowledge during design and manufacturing. Computer-Aided Design, 43(5), 546–562.

    Article  Google Scholar 

  • Pach, C., Bekrar, A., Zbib, N., Sallez, Y., & Trentesaux, D. (2012). An effective potential field approach to FMS holonic heterarchical control. Control Engineering Practice, 20(12), 1293–1309. https://doi.org/10.1016/j.conengprac.2012.07.005.

    Article  Google Scholar 

  • Pach, C., Berger, T., Bonte, T., & Trentesaux, D. (2014). ORCA-FMS: A dynamic architecture for the optimized and reactive control of flexible manufacturing scheduling. Computers in Industry, 65(4), 706–720. https://doi.org/10.1016/j.compind.2014.02.005.

    Article  Google Scholar 

  • Palau, A. S., Dhada, M. H., & Parlikad, A. K. (2019). Multi-agent system architectures for collaborative prognostics. Journal of Intelligent Manufacturing, 30(8), 2999–3013. https://doi.org/10.1007/s10845-019-01478-9.

    Article  Google Scholar 

  • Panetto, H., Dassisti, M., & Tursi, A. (2012). ONTO-PDM: Product-driven ONTOlogy for product data management interoperability within manufacturing process environment. Advanced Engineering Informatics, 26(2), 334–348.

    Article  Google Scholar 

  • Panetto, H., Zdravkovic, M., Jardim-Goncalves, R., Romero, D., Cecil, J., & Mezgár, I. (2016). New perspectives for the future interoperable enterprise systems. Computers in Industry, 79, 47–63. https://doi.org/10.1016/j.compind.2015.08.001.

    Article  Google Scholar 

  • Pannequin, R. (2007). Proposition d’un environnement de modélisation et de test d’architectures de pilotage par le produit de systèmes de production. Nancy: Université Henri Poincaré Nancy I.

    Google Scholar 

  • Pomerol, J.-C. (2012). Decision-making and action. New York: Wiley. https://doi.org/10.1002/9781118561690.

    Book  Google Scholar 

  • Pujo, P., Broissin, N., & Ounnar, F. (2009). PROSIS: An isoarchic structure for HMS control. Engineering Applications of Artificial Intelligence, 22(7), 1034–1045.

    Article  Google Scholar 

  • Puttonen, J., Lobov, A., Soto, M. A. C., & Lastra, J. L. M. (2019). Cloud computing as a facilitator for web service composition in factory automation. Journal of Intelligent Manufacturing, 30(2), 687–700. https://doi.org/10.1007/s10845-016-1277-z.

    Article  Google Scholar 

  • Qi, Q., & Tao, F. (2019). A smart manufacturing service system based on edge computing, fog computing, and cloud computing. IEEE Access, 7, 86769–86777. https://doi.org/10.1109/access.2019.2923610.

    Article  Google Scholar 

  • Quintanilla, F. G., Cardin, O., L’Anton, A., & Castagna, P. (2016). A modeling framework for manufacturing services in service-oriented holonic manufacturing systems. Engineering Applications of Artificial Intelligence, 55, 26–36. https://doi.org/10.1016/j.engappai.2016.06.004.

    Article  Google Scholar 

  • Ranasinghe, D. C., Harrison, M., Främling, K., McFarlane, D., Främling, K., & McFarlane, D. (2010). Enabling through life product-instance management: Solutions and challenges. Journal of Network and Computer Applications, 34(3), 1015–1031.

    Article  Google Scholar 

  • Rey, G. Z., Pach, C., Aissani, N., Bekrar, A., Berger, T., & Trentesaux, D. (2013). The control of myopic behavior in semi-heterarchical production systems: A holonic framework. Engineering Applications of Artificial Intelligence, 26(2), 800–817. https://doi.org/10.1016/j.engappai.2012.08.011.

    Article  Google Scholar 

  • Romero, D., Bernus, P., Noran, O., Stahre, J., & Berglund, Å. F. (2016). The operator 4.0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In Advances in production management systems. initiatives for a sustainable world (APMS 2016), IFIP advances in information and communication technology (Vol. 488, pp. 677–686). https://doi.org/10.1007/978-3-319-51133-7_80.

  • Sallez, Y., Berger, T., & Trentesaux, D. (2009). A stigmergic approach for dynamic routing of active products in FMS. Computers in Industry, 60(3), 204–216.

    Article  Google Scholar 

  • Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wahlster, W. (2017). Industrie 4.0 maturity index. Managing the digital transformation of companies. Web, 1(5765), 46. https://doi.org/10.1136/bmj.3.5765.46-b.

    Article  Google Scholar 

  • Shen, W., Hao, Q., Yoon, H. J., & Norrie, D. H. (2006). Applications of agent-based systems in intelligent manufacturing: An updated review. Advanced Engineering Informatics, 20(4), 415–431.

    Article  Google Scholar 

  • Shen, W., & Norrie, D. H. (1999). Agent-based systems for intelligent manufacturing: A state-of-the-art survey. Knowledge and Information Systems, an International Journal, 1, 129–156.

    Article  Google Scholar 

  • Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge, Mass: MIT press.

    Google Scholar 

  • Smith, R. G. (1980). The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers, 29(12), 1104–1113.

    Article  Google Scholar 

  • Stock, T., & Seliger, G. (2016). Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP, 40, 536–541. https://doi.org/10.1016/j.procir.2016.01.129.

    Article  Google Scholar 

  • Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceability in product lifecycle management. International Journal of Product Lifecycle Management, 2(3), 253–289.

    Article  Google Scholar 

  • The Open Group. (2014). O-MI, Open Messaging Interface, an Open Group Internet of Things (IoT) Standard, Reference C14B, US ISBN 1-937218-60-7.

  • Trentesaux, D. (2009). Distributed control of production systems. Engineering Applications of Artificial Intelligence, 22(7), 971–978. https://doi.org/10.1016/j.engappai.2009.05.001.

    Article  Google Scholar 

  • Trentesaux, D., & Branger, G. (2018). Foundation of the surfer data management architecture and its application to train transportation. In International workshop on service orientation in holonic and multi-agent manufacturing, studies in computational intelligence (Vol. 762, pp. 111–125). Springer.

  • Trentesaux, D., Giret, A., Tonelli, F., & Skobelev, P. (2016). Emerging key requirements for future energy-aware production scheduling systems: a multi-agent and holonic perspective. In International workshop on service orientation in holonic and multi-agent manufacturing, studies in computational intelligence (Vol. 694, pp. 127–141). Springer.

  • Trentesaux, D., & Millot, P. (2016). A human-centred design to break the myth of the “magic human” in intelligent manufacturing systems. In T. Borangiu, D. Trentesaux, A. Thomas, & D. McFarlane (Eds.), Service orientation in holonic and multi-agent manufacturing, studies in computational intelligence (Vol. 640, pp. 103–113). Cham: Springer. https://doi.org/10.1007/978-3-319-30337-6_10.

    Chapter  Google Scholar 

  • Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T., et al. (2013). Benchmarking flexible job-shop scheduling and control systems. Control Engineering Practice, 21(9), 1204–1225. https://doi.org/10.1016/j.conengprac.2013.05.004.

    Article  Google Scholar 

  • Trentesaux, D., & Rault, R. (2017). Designing ethical cyber-physical industrial systems. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2017.08.2543.

    Article  Google Scholar 

  • Tursi, A., Panetto, H., Morel, G., & Dassisti, M. (2009). Ontological approach for products-centric information system interoperability in networked manufacturing enterprises. Annual Reviews in Control, 33(2), 238–245. https://doi.org/10.1016/j.arcontrol.2009.05.003.

    Article  Google Scholar 

  • Valckenaers, P. (2018). ARTI reference architecture—PROSA revisited. In International workshop on service orientation in holonic and multi-agent manufacturing, studies in computational intelligence (Vol. 803, pp. 1–19). Springer, Cham.

  • Valckenaers, P., Kollingbaum, M., Van Brussel, H., et al. (2004). Multi-agent coordination and control using stigmergy. Computers in Industry, 53(1), 75–96.

    Article  Google Scholar 

  • Valckenaers, P., & Van Brussel, H. (2005). Holonic manufacturing execution systems. CIRP Annals - Manufacturing Technology, 54(1), 427–432. https://doi.org/10.1016/S0007-8506(07)60137-1.

    Article  Google Scholar 

  • Valckenaers, P., Van Brussel, H., Bruyninckx, H., Saint Germain, B., Van Belle, J., & Philips, J. (2011). Predicting the unexpected. Computers in Industry, 62(6), 623–637. https://doi.org/10.1016/j.compind.2011.04.011.

    Article  Google Scholar 

  • Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37(3), 255–274. https://doi.org/10.1016/S0166-3615(98)00102-X.

    Article  Google Scholar 

  • Vegetti, M., Leone, H., & Henning, G. (2011). PRONTO: An ontology for comprehensive and consistent representation of product information. Engineering Applications of Artificial Intelligence, 24(8), 1305–1327. https://doi.org/10.1016/j.engappai.2011.02.014.

    Article  Google Scholar 

  • Verstraete, P., Saint Germain, B., Valckenaers, P., Van Brussel, H., Van Belle, J., & Karuna, H. (2008). Engineering manufacturing control systems using PROSA and delegate MAS. International Journal of Agent-Oriented Software Engineering, 2(1), 62–89. https://doi.org/10.1504/IJAOSE.2008.016800.

    Article  Google Scholar 

  • Vogel-Heuser, B., & Hess, D. (2016). Guest editorial Industry 4.0—prerequisites and visions. IEEE Transactions on Automation Science and Engineering, 13(2), 411–413. https://doi.org/10.1109/TASE.2016.2523639.

    Article  Google Scholar 

  • Wang, L., & Haghighi, A. (2016). Combined strength of holons, agents and function blocks in cyber-physical systems. Journal of manufacturing systems, 40, 25–34.

    Article  Google Scholar 

  • Weichhart, G., Guédria, W., & Naudet, Y. (2016). Supporting interoperability in complex adaptive enterprise systems: A domain specific language approach. Data & Knowledge Engineering, 105, 90–106. https://doi.org/10.1016/j.datak.2016.04.001.

    Article  Google Scholar 

  • Wu, M., Song, Z., & Moon, Y. B. (2019). Detecting cyber-physical attacks in cyber manufacturing systems with machine learning methods. Journal of Intelligent Manufacturing, 30(3), 1111–1123. https://doi.org/10.1007/s10845-017-1315-5.

    Article  Google Scholar 

  • Yampolskiy, M., Horváth, P., Koutsoukos, X. D., Xue, Y., & Sztipanovits, J. (2015). A language for describing attacks on cyber-physical systems. International Journal of Critical Infrastructure Protection, 8, 40–52. https://doi.org/10.1016/j.ijcip.2014.09.003.

    Article  Google Scholar 

  • Zezulka, F., Marcon, P., Vesely, I., & Sajdl, O. (2016). Industry 4.0—an introduction in the phenomenon. IFAC-PapersOnLine, 49(25), 8–12. https://doi.org/10.1016/j.ifacol.2016.12.002.

    Article  Google Scholar 

  • Zhang, L., Wang, Q., & Tian, B. (2013). Security threats and measures for the cyber-physical systems. Journal of China Universities of Posts and Telecommunications, 20, 25–29. https://doi.org/10.1016/S1005-8885(13)60254-X.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the French National Research Agency ANR, which supports and funds the Humanism Project (ANR-17-CE10-0009) and the McBIM Project (ANR17-CE10-0014). The authors would like to thank the reviewers for their valuable time and constructive comments that allowed to improve this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Derigent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derigent, W., Cardin, O. & Trentesaux, D. Industry 4.0: contributions of holonic manufacturing control architectures and future challenges. J Intell Manuf 32, 1797–1818 (2021). https://doi.org/10.1007/s10845-020-01532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-020-01532-x

Keywords

Navigation