Skip to main content
Log in

Real-time monitoring of chemical processes based on variation information of principal component analysis model

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

In industrial processes, the change of operating condition can obviously affect the relations among process data, which in turn indicate the corresponding operating conditions. Considering that the loadings and eigenvalues, generated from the principal component analysis (PCA) model, contain primary data information and can reflect the characteristics of data, this article proposes novel monitoring statistics which quantitatively evaluate the variation of these two matrices, collected from real-time updated PCA model for process monitoring. Given that abnormal data may be submerged by normal data, a combined moving window which selects both real-time data and normal data is employed to collect data for model construction. By comparing with other PCA-based and non-PCA-based methods through a simple numerical simulation and the Tennessee Eastman process, the proposed data-driven method is demonstrated to be effective and feasible. Additionally, some other PCA-based methods are utilized for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459.

    Article  Google Scholar 

  • Ahmadi, A., Omatu, S., Fujinaka, T., & Kosaka, T. (2004). Improvement of reliability in banknote classification using reject option and local PCA. Information Sciences, 168(1), 277–293.

    Article  Google Scholar 

  • Akinduko, A., & Gorban, A. (2014). Multiscale principal component analysis. Journal of Physics: Conference Series, 490, 012081.

    Google Scholar 

  • Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: An overview. Quality and Reliability Engineering International, 23(5), 517–543.

    Article  Google Scholar 

  • Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 1). New York: springer.

    Google Scholar 

  • Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6(9), 2812–2831.

    Article  Google Scholar 

  • Camacho, J., & Ferrer, A. (2012). Cross-validation in PCA models with the element-wise k-fold (ekf) algorithm: Theoretical aspects. Journal of Chemometrics, 26(7), 361–373.

    Article  Google Scholar 

  • Cheng, C., & Chiu, M.-S. (2005). Nonlinear process monitoring using JITL-PCA. Chemometrics and Intelligent Laboratory Systems, 76(1), 1–13.

    Article  Google Scholar 

  • Chiang, L. H., Braatz, R. D., & Russell, E. L. (2001). Fault detection and diagnosis in industrial systems. Berlin: Springer.

    Book  Google Scholar 

  • Danielsson, P.-E. (1980). Euclidean distance mapping. Computer Graphics and image processing, 14(3), 227–248.

    Article  Google Scholar 

  • Dattorro, J. (2008). Equality relating Euclidean distance cone to positive semidefinite cone. Linear Algebra and its Applications, 428(11), 2597–2600.

    Article  Google Scholar 

  • Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural networks: Theory and applications. New York: Wiley.

    Google Scholar 

  • Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 245–255.

    Article  Google Scholar 

  • Faggian, A., Facco, P., Doplicher, F., Bezzo, F., & Barolo, M. (2009). Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals. Chemical Engineering Research and Design, 87(3), 325–334.

    Article  Google Scholar 

  • Ge, Z., & Song, Z. (2009). Two-level multiblock statistical monitoring for plant-wide processes. Korean Journal of Chemical Engineering, 26(6), 1467–1475.

    Article  Google Scholar 

  • Ge, Z., & Song, Z. (2013). Distributed PCA model for plant-wide process monitoring. Industrial & Engineering Chemistry Research, 52(5), 1947–1957.

    Article  Google Scholar 

  • Ge, Z., Zhang, M., & Song, Z. (2010). Nonlinear process monitoring based on linear subspace and Bayesian inference. Journal of Process Control, 20(5), 676–688.

    Article  Google Scholar 

  • Grbovic, M., Li, W., Xu, P., Usadi, A. K., Song, L., & Vucetic, S. (2012). Decentralized fault detection and diagnosis via sparse PCA based decomposition and maximum entropy decision fusion. Journal of Process Control, 22(4), 738–750.

    Article  Google Scholar 

  • Härdle, W. K., & Hlávka, Z. (2015). Principal component analysis. In Multivariate statistics (pp. 183–203): Springer.

  • Hong, J. J., Zhang, J., & Morris, J. (2014). Progressive multi-block modelling for enhanced fault isolation in batch processes. Journal of Process Control, 24(1), 13–26.

    Article  Google Scholar 

  • Jiang, Q., & Yan, X. (2013). Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring. Chemometrics and Intelligent Laboratory Systems, 127, 121–131.

    Article  Google Scholar 

  • Jiang, Q., & Yan, X. (2014). Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring. AIChE Journal, 60(3), 949–965.

    Article  Google Scholar 

  • Jiang, Q., Yan, X., & Tong, C. (2013a). Double-weighted independent component analysis for non-Gaussian chemical process monitoring. Industrial & Engineering Chemistry Research, 52(40), 14396–14405.

    Article  Google Scholar 

  • Jiang, Q., Yan, X., & Zhao, W. (2013b). Fault detection and diagnosis in chemical processes using sensitive principal component analysis. Industrial & Engineering Chemistry Research, 52(4), 1635–1644.

    Article  Google Scholar 

  • Johannesmeyer, M. C., Singhal, A., & Seborg, D. E. (2002). Pattern matching in historical data. AIChE Journal, 48(9), 2022–2038.

    Article  Google Scholar 

  • Jolliffe, I. (2005). Principal component analysis. New York: Wiley Online Library.

    Google Scholar 

  • Kano, M., & Fujiwara, K. (2013). Virtual sensing technology in process industries: Trends and challenges revealed by recent industrial applications. Journal of Chemical Engineering of Japan, 46(1), 1–17.

    Article  Google Scholar 

  • Kano, M., Hasebe, S., Hashimoto, I., & Ohno, H. (2001). A new multivariate statistical process monitoring method using principal component analysis. Computers & Chemical Engineering, 25(7), 1103–1113.

    Article  Google Scholar 

  • Kano, M., Hasebe, S., Hashimoto, I., & Ohno, H. (2002). Statistical process monitoring based on dissimilarity of process data. American Institute of Chemical Engineers. AIChE Journal, 48(6), 1231.

    Article  Google Scholar 

  • Kano, M., Nagao, K., Hasebe, S., Hashimoto, I., Ohno, H., Strauss, R., et al. (2000). Comparison of statistical process monitoring methods: Application to the Eastman challenge problem. Computers & Chemical Engineering, 24(2), 175–181.

    Article  Google Scholar 

  • Kopetz, H. (2011). Real-time systems: Design principles for distributed embedded applications. New York: Springer.

    Book  Google Scholar 

  • Ku, W., Storer, R. H., & Georgakis, C. (1995). Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and Intelligent Laboratory Systems, 30(1), 179–196.

    Article  Google Scholar 

  • Lee, J.-M., Yoo, C., & Lee, I.-B. (2004). Statistical process monitoring with independent component analysis. Journal of Process Control, 14(5), 467–485.

    Article  Google Scholar 

  • Li, W., Yue, H. H., Valle-Cervantes, S., & Qin, S. J. (2000). Recursive PCA for adaptive process monitoring. Journal of Process Control, 10(5), 471–486.

    Article  Google Scholar 

  • Liu, J., Chen, D.-S., & Shen, J.-F. (2010). Development of self-validating soft sensors using fast moving window partial least squares. Industrial & Engineering Chemistry Research, 49(22), 11530–11546.

    Article  Google Scholar 

  • Ma, Y., Shi, H., & Wang, M. (2014). Adaptive local outlier probability for dynamic process monitoring. Chinese Journal of Chemical Engineering, 22(7), 820–827.

    Article  Google Scholar 

  • Maurya, M., Rengaswamy, R., & Venkatasubramanian, V. (2005). Fault diagnosis by qualitative trend analysis of the principal components. Chemical Engineering Research and Design, 83(9), 1122–1132.

    Article  Google Scholar 

  • McAvoy, T., & Ye, N. (1994). Base control for the Tennessee Eastman problem. Computers & Chemical Engineering, 18(5), 383–413.

    Article  Google Scholar 

  • Nowicki, A., Grochowski, M., & Duzinkiewicz, K. (2012). Data-driven models for fault detection using kernel PCA: A water distribution system case study. International Journal of Applied Mathematics and Computer Science, 22(4), 939–949.

    Article  Google Scholar 

  • Raich, A., & Cinar, A. (1996). Statistical process monitoring and disturbance diagnosis in multivariable continuous processes. AIChE Journal, 42(4), 995–1009.

  • Rashid, M. M., & Yu, J. (2012). A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemometrics and Intelligent Laboratory Systems, 115, 44–58.

    Article  Google Scholar 

  • Ryu, S. R., Noda, I., & Jung, Y. M. (2011). Moving window principal component analysis for detecting positional fluctuation of spectral changes. Bull. of the Korean Chemical Society, 32(7), 2232–2338.

    Google Scholar 

  • Schölkopf, B., Smola, A., & Müller, K.-R. (1997). Kernel principal component analysis. In Artificial neural networks—ICANN’97 (pp. 583–588): Springer.

  • Singhal, A., & Seborg, D. E. (2006). Evaluation of a pattern matching method for the Tennessee Eastman challenge process. Journal of Process Control, 16(6), 601–613.

    Article  Google Scholar 

  • Wang, B., Jiang, Q., & Yan, X. (2014). Fault detection and identification using a Kullback-Leibler divergence based multi-block principal component analysis and Bayesian inference. Korean Journal of Chemical Engineering, 31(6), 930–943.

  • Wang, B., Yan, X., Jiang, Q., & Lv, Z. (2015). Generalized Dice’s coefficient-based multi-block principal component analysis with Bayesian inference for plant - wide process monitoring. Journal of Chemometrics, 29(3), 165–178.

    Article  Google Scholar 

  • Wang, X., Kruger, U., & Irwin, G. W. (2005). Process monitoring approach using fast moving window PCA. Industrial & Engineering Chemistry Research, 44(15), 5691–5702.

    Article  Google Scholar 

  • Wehrens, R. (2011). Principal component analysis. In Chemometrics with R (pp. 43–66). Springer.

  • Wells, L. J., Megahed, F. M., Niziolek, C. B., Camelio, J. A., & Woodall, W. H. (2013). Statistical process monitoring approach for high-density point clouds. Journal of Intelligent Manufacturing, 24(6), 1267–1279.

    Article  Google Scholar 

  • Yang, Q., Tian, F., & Wang, D. (2010). Online approach of fault diagnosis based on lifting wavelets and moving window PCA. In 2010 8th world congress on intelligent control and automation (WCICA), 2010 (pp. 2909–2913). IEEE.

  • Yang, W.-A. (2015). Monitoring and diagnosing of mean shifts in multivariate manufacturing processes using two-level selective ensemble of learning vector quantization neural networks. Journal of Intelligent Manufacturing, 26(4), 769–783.

  • Yin, S., Ding, S. X., Haghani, A., Hao, H., & Zhang, P. (2012). A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 22(9), 1567–1581.

    Article  Google Scholar 

  • Yin, S., Luo, H., & Ding, S. X. (2014). Real-time implementation of fault-tolerant control systems with performance optimization. IEEE Transactions on Industrial Electronics, 61(5), 2402–2411.

  • Zhao, D., Wang, Y., Sheng, S., & Lin, Z. (2014). Multi-objective optimal design of small scale resistance spot welding process with principal component analysis and response surface methodology. Journal of Intelligent Manufacturing, 25(6), 1335–1348.

    Article  Google Scholar 

  • Zhaomin, L., Qingchao, J., & Xuefeng, Y. (2014). Batch process monitoring based on multisubspace multiway principal component analysis and time-series Bayesian inference. Industrial & Engineering Chemistry Research, 53(15), 6457–6466.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the 973 Project of China (2013CB733600), the National Natural Science Foundation of China (21176073), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Yan.

Ethics declarations

Conflict of interest

The authors all declare that there is no potential conflicts of interest on this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yan, X. Real-time monitoring of chemical processes based on variation information of principal component analysis model. J Intell Manuf 30, 795–808 (2019). https://doi.org/10.1007/s10845-016-1281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-016-1281-3

Keywords

Navigation