Skip to main content
Log in

Artificial intelligence based system to improve the inspection of plastic mould surfaces

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic moulds, used mainly in the injection moulding process. This paper presents a methodology for the surface evaluation of plastic moulds, aiming the automation of the polishing surface analysis. Provided that this type of analysis by traditional procedures can be slow and expensive, the development of automatic system could lead to considerable improvements regarding the speed and reliability of information. The starting point of the evaluation procedure is the image generated by the laser light scattered over the sample mould surface that could be captured and analysed by image processing and artificial intelligence techniques. The results showed that the proposed system is able to mapping and classifying several damages over the polished surface and could be an alternative to reduce efficiently the costs and the spending time in mould surface inspection tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal, K., & Rajiv, S. (2013). On line prediction of surface defects in hot bar rolling based on bayesian hierarchical modeling. Journal of Intelligent Manufacturing, 1–16. doi:10.1007/s10845-013-0834-y.

  • Araújo, S. A., & Kim, H. Y. (2011). Ciratefi: An RST-invariant template matching with extension to color images. Integrated Computer-Aided Engineering., 18, 75–90. doi:10.3233/ICA-2011-0358.

  • Bustillo, A., & Maritza, C. (2012). Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 23(5), 1893–1902. doi:10.1007/s10845-011-0506-8.

    Article  Google Scholar 

  • Çaydaş, U., & Sami, E. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23(3), 639–650. doi:10.1007/s10845-010-0415-2.

    Article  Google Scholar 

  • Chan, W. L., Fu, M. W., & Lu, J. (2008). An integrated FEM and ANN methodology for metal-formed product design. Engineering Applications of Artificial Intelligence, 21, 1170–1181. doi:10.1016/j.engappai.2008.04.001.

    Article  Google Scholar 

  • Che, Z. H. (2010). PSO-based back-propagation artificial neural network for product and mold cost estimation of plastic injection molding. Computers & Industrial Engineering, 58, 625–637.

    Article  Google Scholar 

  • Chen, S., & Der-Baau, P. (2014). Automatic optical inspection system for IC molding surface. Journal of Intelligent Manufacturing, 1–12. doi:10.1007/s10845-014-0924-5.

  • Fasel, I. R., Bartlett, M. S., & Movellan, J. R. (2002). A comparison of Gabor filter methods for automatic detection of facial landmarks. In Proceedings of Fifth IEEE international conference on automatic face gesture recognition, pp. 242–246. doi:10.1109/AFGR.2002.1004161

  • Fogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological Cybernetics, 61, 103–113. doi:10.1007/BF00204594.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing (2nd ed.). Massachusetts: Addison-Wesley.

    Google Scholar 

  • Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Huang, P. (2014). An intelligent neural-fuzzy model for an in-process surface roughness monitoring system in end milling operations. Journal of Intelligent Manufacturing, 1–12. doi:10.1007/s10845-014-0907-6.

  • Jain, A. K., & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24, 1167–1186. doi:10.1016/0031-3203(91)90143-S.

    Article  Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis (2nd ed.). Aberdeen: Springer.

    Google Scholar 

  • Kim, H. Y. (2010). ProEikon library for image processing and computer vision. http://www.lps.usp.br/hae/software. Accessed at February 2010.

  • Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2013). Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing. Journal of Intelligent Manufacturing, 24(4), 755–762. doi:10.1007/s10845-012-0623-z.

    Article  Google Scholar 

  • Mesquita, R. A., & Schneider, R. S. E. (2010). Tool steel quality and surface finishing of plastic molds. Exacta, 8, 307–318. doi:10.5585/exacta.v8i3.2442.

    Article  Google Scholar 

  • Pasternack, R. M., Qian, Z., Zheng, J. Y., Metaxas, D. N., & Boustany, N. N. (2009). Highly sensitive size discrimination of sub-micron objects using optical Fourier processing based on two-dimensional Gabor filters. Optics Express, 17, 12001–12012. doi:10.1364/OE.17.012001.

    Article  Google Scholar 

  • Sankar, M. R., Jain, V. K., & Ramkumar, J. (2010). Rotational abrasive flow finishing (R-AFF) process and its effects on finished surface topography. International Journal of Machine Tools & Manufacture, 50, 637–650. doi:10.1016/j.ijmachtools.2010.03.007.

    Article  Google Scholar 

  • Sun, T., Fang-Cheng, T., Fang-Chih, T., & Ren-Jieh, K. (2014). Automated thermal fuse inspection using machine vision and artificial neural networks. Journal of Intelligent Manufacturing, 1–13. doi:10.1007/s10845-014-0902-y.

  • Sun, J. J., Taylor, E. J., & Srinivasan, R. (2001). MREF-ECM process for hard passive materials surface finishing. Journal of Materials Processing Technology, 108, 356–368. doi:10.1016/S0924-0136(00)00833-5.

    Article  Google Scholar 

  • Tomasz, L., Michal, K., & Stanislaw, O. (2013). Automatic recognition of industrial tools using artificial intelligence approach. Expert Systems with Applications, 40, 4777–4784. doi:10.1016/j.eswa.2013.02.030.

    Article  Google Scholar 

  • Wang, G., Yiqiang, W., Ji, Z., & Guiliang, C. (2012). Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm. Journal of Intelligent Manufacturing, 23(3), 365–374. doi:10.1007/s10845-009-0376-5.

  • Yan, B. H., Tzeng, H. J., Huang, F. Y., Lin, Y. C., & Chow, H. M. (2007). Finishing effects of spiral polishing method on micro lapping surface. International Journal of Machine Tools & Manufacture, 47, 920–926. doi:10.1016/j.ijmachtools.2006.07.009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Uninove, CAPES and CNPq for the scholarship granted to two of the authors, as well as Villares Metals for providing the samples of polished moulds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André. F. H. Librantz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Librantz, A.F.H., de Araújo, S.A., Alves, W.A.L. et al. Artificial intelligence based system to improve the inspection of plastic mould surfaces. J Intell Manuf 28, 181–190 (2017). https://doi.org/10.1007/s10845-014-0969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-014-0969-5

Keywords

Navigation