Skip to main content

Advertisement

Log in

Assessing the distribution and conservation status of a long-horned beetle with species distribution models

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Data shortfalls on species distribution affect species differently, but it is frequent among insects. Species distribution models (SDMs) are important tools to fill biogeographic deficits and provide support for practical conservation actions, particularly for cryptic or hard to survey species. We employed SDMs to evaluate one such species, the long-horned beetle (Macrodontia cervicornis), listed as ‘vulnerable’ in the IUCN’s Red List of Threatened Species. Given new distributional data for this species, we applied three different SDMs to: (1) provide the first assessment of this species’ distribution and potential dispersal routes; (2) evaluate the effectiveness of the current South American protected areas system for its conservation; and (3) discuss its potential distribution, as well as historical, biogeographical, and taxonomic issues related to it. Our models reached fair True Skilled Statistics values (TSS > 0.5), with the core area for M. cervicornis located in the Amazon forest, although suitable areas were also predicted along the Atlantic forest. Areas in the dry diagonal South American corridor (dry biomes of Cerrado, Caatinga, and Pampas) in South America were not predicted as suitable. The preference of M. cervicornis for humid areas with high temperatures may guarantee a better physiological control for dehydration, considering that large insects are more affected by water loss. In general, approximately 15 % of the distribution of M. cervicornis is in humid protected areas. The disconnected distribution of the long-horned beetle may be an indication of the existence of cryptic species under the same classification. We suggest that similar studies with other insect groups (e.g. butterflies, bees) should be conducted to properly assess their distributions, conservation status, and responses to hot-humid gradients throughout South America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ab’Saber AN (1977) Os domínios morfoclimáticos da América do Sul. Primeira Aproximação. Geomorfologia 52:1–21

    Google Scholar 

  • Aguiar AJC, Melo GAR (2007) Taxonomic revision, phylogenetic analysis, and biogeography of the bee genus Tropidopedia (Hymenoptera, Apidae, Tapinotaspidini). Zool J Linn Soc 151:511–554

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the True Skill Statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Almeida MC, Côrtes LG, De Marco Jr P (2010) New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv Divers 3:252–256

    Article  Google Scholar 

  • Anderson RP, Gonzalez IJ (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Batalha-Filho H, Fjeldså J, Fabre PH, Miyaki CY (2012) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50

    Article  Google Scholar 

  • Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nat Conserv 21:72–80. doi:10.1016/j.jnc.2012.10.003

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, da Fonseca GAB et al (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  • Brown KS Jr (1987) Biogeography and evolution of Neotropical butterflies. In: Whitmore T, Prance G (eds) Biogeography and quaternary history in tropical America. Oxford University Press, Oxford, pp 66–104

    Google Scholar 

  • Brown KS Jr (1992) Habitat alteration and species loss in Brazilian forests. In: Whitmore T, Sayer J (eds) Tropical deforestation and species extinction. Chapman and Hall, London, pp 119–142

    Google Scholar 

  • Cardoso P, Erwin TL, Borges PAV, New TR (2011) The seven impediments in invertebrate conservation and how to overcome them. Biol Conserv 144:2647–2655

    Article  Google Scholar 

  • Cavalli M, Baladrón AV, Isacch JP et al (2014) Social networks and ornithology studies: an innovative method for rapidly accessing data on conspicuous bird species. Biodivers Conserv 23:2127–2134. doi:10.1007/s10531-014-0704-8

    Article  Google Scholar 

  • Chown SL, Terblanche JS (2006) Physiological diversity in insects: ecological and evolutionary contexts. Adv In Insect Phys 33:50–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Article  Google Scholar 

  • Da Mata RA, Tidon R, Côrtes LG et al (2010) Invasive and flexible: niche shift in the drosophilid Zaprionus indianus (Insecta, Diptera). Biol Invasions 12:1231–1241

    Article  Google Scholar 

  • De Oliveira PE, Magno A, Suguio K (1999) Late Pleistocene/Holocene climatic and vegetational history of the Brazilian Caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152:319–337

    Article  Google Scholar 

  • de Oliveira G, Rangel TF, Lima-Ribeiro MS et al (2014) Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37:637–647

    Article  Google Scholar 

  • de Vivo M (1997) Mammalian evidence of historical ecological change in the Caatinga semiarid vegetation of northeastern Brazil. J Comp Biol 2:65–73

    Google Scholar 

  • Diniz-Filho JAF, Bini LM, Rangel TFLVB et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Diniz-Filho JAF, De Marco Jr P, Hawkins BA (2010) Defying the curse of ignorance: perspectives in insect macroecology and conservation biogeography. Insect Conserv Divers 3:172–179

    Google Scholar 

  • Diniz-Filho JAF, Loyola RD, Raia P et al (2013) Darwinian shortfalls in biodiversity conservation. Trends Ecol Evol 28:689–695

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, Barbosa ACOF, Collevatti RG et al (2016) Spatial autocorrelation analysis and ecological niche modelling allows inference of range dynamics driving the population genetic structure of a Neotropical savanna tree. J Biogeogr 43:167–177. doi:10.1111/jbi.12622

    Article  Google Scholar 

  • Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Doko T, Fukui H, Kooiman A et al (2011) Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecol Model 222:748–761. doi:10.1016/j.ecolmodel.2010.11.005

    Article  Google Scholar 

  • Duan R-Y, Kong X-Q, Huang M-Y et al (2014) The predictive performance and stability of six species distribution models. PLoS ONE 9:e112764

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T et al (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Escalante JA (1973) Apuntes sobre insectos del Alto Urubamba, Cusco. Rev Peru Entomol 17:120–121

    Google Scholar 

  • Ferreira J, Aragão LEOC, Barlow J et al (2014) Brazil’s environmental leadership at risk. Science 346:706–707

    Article  CAS  PubMed  Google Scholar 

  • Ferro VG, Lemes P, Melo AS, Loyola R (2014) The reduced effectiveness of protected areas under climate change threatens Atlantic Forest tiger moths. PLoS ONE 9:e107792

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannini TC, Acosta AL, Garófalo CA et al (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131

    Article  Google Scholar 

  • Google Inc. (2015) Google Earth, version 7.0.3.8542

  • Graham CH, Ferrier S, Huettman F et al (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hochachka WM, Fink D, Hutchinson RA et al (2012) Data-intensive science applied to broad-scale citizen science. Trends Ecol Evol 27:130–137. doi:10.1016/j.tree.2011.11.006

    Article  PubMed  Google Scholar 

  • Hortal J, de Bello F, Diniz-Filho JAF et al (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst 46:523–549. doi:10.1146/annurev-ecolsys-112414-054400

    Article  Google Scholar 

  • IUCN (2006) IUCN red list of threatened species. www.iucnredlist.org. Accessed 28 Nov 2014

  • Jiménez-Valverde A, Peterson AT, Soberón J et al (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD et al (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Article  Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Liu C, White M, Newell G (2011) Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34:232–243

    Article  CAS  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. Bioscience 56:311

    Article  Google Scholar 

  • Loyola R (2014) Brazil cannot risk its environmental leadership. Divers Distrib. doi:10.1111/ddi.12252

    Google Scholar 

  • Lucky A, Savage AM, Nichols LM, et al (2014) Ecologists, educators, and writers collaborate with the public to assess backyard diversity in The School of Ants Project. Ecosphere 5: art78. doi: 10.1890/ES13-00364.1

  • Martins UR, Galileo MHM, Limeira-de-Oliveira F (2009) Cerambycidae (Coleoptera) do estado do Maranhão, Brasil. Papéis Avulsos Zool do Mus Zool da Univ São Paulo 49:229–247

  • Martins AC, Silva DP, De Marco Jr P, Melo GAR (2015) Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. J Insect Conserv 19:33–43

    Article  Google Scholar 

  • Martins DC, Albuquerque PMC, Silva FS, Rebêlo JMM (2016) First record of Aglae caerulea (Hymenoptera, Apidae, Euglossini) in Brazilian Cerrado east of the Amazon Region, Maranhão State, Brazil. Rev Bras Biol 76:554–556. doi:10.1590/1519-6984.06415

    CAS  Google Scholar 

  • McInerny GJ, Etienne RS (2012a) Ditch the niche—is the niche a useful concept in ecology or species distribution modelling? J Biogeogr 39:2096–2102

    Article  Google Scholar 

  • McInerny GJ, Etienne RS (2012b) Stitch the niche—a practical philosophy and visual schematic for the niche concept. J Biogeogr 39:2103–2111

    Article  Google Scholar 

  • McInerny GJ, Etienne RS (2012c) Pitch the niche—taking responsibility for the concepts we use in ecology and species distribution modelling. J Biogeogr 39:2112–2118

    Article  Google Scholar 

  • Méio BB, Freitas CV, Jatobá L et al (2003) Influência da flora das florestas Amazônica e Atlântica na vegetação do cerrado sensu stricto. Rev Bras Botânica 26:437–444

    Google Scholar 

  • Menezes EC, Silva-Neto AM, Nascimento FEL, Bravo FR (2012) Lista das espécies da família Cerambicydae, incluindo 12 holótipos, presentes na coleção entomológica Professor Johann Becker do Museu de Zoologia da Universidade Estadual de Feira de Santana (MZUEFS) e o primeiro registro da espécie Chrysoprasis airi. Entomobrasilis 5:49–58

    Article  Google Scholar 

  • Miller JA (2012) Species distribution models: spatial autocorrelation and non-stationarity. Prog Phys Geogr 36:681–692

    Article  Google Scholar 

  • Mittermeier R, Baião PC, Barrera L et al (2010) Brazil’s leading role in the historical global agreement for the protection of biodiversity. Nat Conserv 8:197–200

    Article  Google Scholar 

  • Mora C, Tittensor DP, Adl S et al (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz MES, De Giovanni R, de Siqueira MF et al (2011) openModeller: a generic approach to species’ potential distribution modelling. Geoinformatica 15:111–135

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22

    Article  Google Scholar 

  • Nóbrega CC, De Marco Jr P (2011) Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers Distrib 17:491–505

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions, 1st edn. Princeton University Press, Princeton

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pyke GH, Ehrlich PR (2010) Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev 85:247–266

    Article  PubMed  Google Scholar 

  • Rangel TF, Loyola RD (2012) Labeling ecological niche models. Nat Conserv 10:119–126

    Article  Google Scholar 

  • Record S, Fitzpatrick MC, Finley AO et al (2013) Should species distribution models account for spatial autocorrelation? A test of model projections across eight millennia of climate change. Glob Ecol Biogeogr 22:760–771

    Article  Google Scholar 

  • Redford KH, da Fonseca GAB (1986) The role of gallery forests in the zoogeography of the Cerrado’s non-volant mammalian fauna. Biotropica 18:126–135

    Article  Google Scholar 

  • Rocchini D, Hortal J, Lengyel S et al (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog Phys Geogr 35:211–226

    Article  Google Scholar 

  • Rodrigues ASL, Andelman SJ, Bakarr MI et al (2004) Effectiveness of the global protected area network in representing species diversity. Nature 428:640–643

    Article  CAS  PubMed  Google Scholar 

  • Russo D, Di Febbraro M, Rebelo H et al (2014) What story does geographic separation of insular bats tell? A case study on Sardinian rhinolophids. PLoS ONE 9:e110894. doi:10.1371/journal.pone.0110894

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo D, Di Febbraro M, Cistrone L et al (2015) Protecting one, protecting both? Scale-dependent ecological differences in two species using dead trees, the rosalia longicorn beetle and the barbastelle bat. J Zool 297:165–175. doi:10.1111/jzo.12271

    Article  Google Scholar 

  • Salazar JA (2008) Sobre algunas localidades colombianas para conocer y estudiar Macrodontia cervicornis (L.), M. dejeani (Gory) y Titanus giganteus (L.) (Coleoptera: Cerambycidae). Bol Mus Hist Nat 8:155–171

    Google Scholar 

  • Sampaio EVSB (1995) Overview of the Brazilian Caatinga. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally tropical dry forests, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Schölkopf B, Platt JC, Shawe-Taylor J et al (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    Article  PubMed  Google Scholar 

  • Serra BDV, De Marco Jr P, Nóbrega CC, Campos LAO (2012) Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, Apidae): conserving isolated populations in mountain habitats. Nat Conserv 10:199–206

    Article  Google Scholar 

  • Silva JMC (1996) Distribution of Amazonian and Atlantic birds in gallery forests of the Cerrado region, South America. Ornitol Neotrop 7:1–18

    Google Scholar 

  • Silva DP, Aguiar AJC, Melo GAR et al (2013) Amazonian species within the Cerrado savanna: new records and potential distribution for Aglae caerulea (Apidae: Euglossini). Apidologie 44:673–683

    Article  Google Scholar 

  • Silva DP, Gonzalez VH, Melo GAR et al (2014a) Seeking the flowers for the bees: integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America. Ecol Model 273:200–209

    Article  Google Scholar 

  • Silva DP, Vilela B, De Marco Jr P, Nemésio A (2014b) Using ecological niche models and niche analyses to understand speciation patterns: the case of sister neotropical orchid bees. PLoS ONE 9:e113246

    Article  PubMed  PubMed Central  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Informatics 2:1–10

    Article  Google Scholar 

  • Souza RA, De Marco Jr P (2014) The use of species distribution models to predict the spatial distribution of deforestation in the western Brazilian Amazon. Ecol Model. doi:10.1016/j.ecolmodel.2014.07.007

    Google Scholar 

  • Stockwell D, Peters D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J Geogr Inf Sci 13:143–158

    Article  Google Scholar 

  • Tax DMJ, Duin RPW (2004) Support vector data description. Mach Learn 54:45–66

    Article  Google Scholar 

  • Varela S, Anderson RP, García-Valdés R, Fernández-González F (2014) Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37:1084–1091

    Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal, 1st edn. Instituto Brasileiro de Geografia e Estatística—IBGE, Rio de Janeiro

    Google Scholar 

  • Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299

    Article  Google Scholar 

  • Virkkala R, Heikkinen RK, Fronzek S, Leikola N (2013) Climate change, northern birds of conservation concern and matching the hotspots of habitat suitability with the reserve network. PLoS ONE 8:e63376. doi:10.1371/journal.pone.0063376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P et al (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Article  Google Scholar 

  • Wilson EO (1987) The little things that run the world (the importance and conservation of invertebrates). Conserv Biol 1:344–346

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. C. Martins, O. Gauthier, C. Phifer, E. Wendpap, and two anonymous reviewers for important improvements of a previous version of this manuscript. JSF is grateful to Universidade Estadual de Goiás for the grant support she received from the “Programa de Bolsa de Incentivo à Pesquisa” (PROBIP). In memoriam of Marcisnei L. Zimmermann, a promising professor and a good friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel P. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.P., Aguiar, A.G. & Simião-Ferreira, J. Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J Insect Conserv 20, 611–620 (2016). https://doi.org/10.1007/s10841-016-9892-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-016-9892-8

Keywords

Navigation