Skip to main content
Log in

Temperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its range

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Altitudinal gradients strongly affect species distribution through the direct and indirect effects of temperature. While numerous studies have been done in the central parts or at the northern edges of species’ distributions, the patterns found at the southern edges of species’ distributions in the southern part of the temperate zone have received much less attention, especially in forest floor insect herbivores. In a case study of the altitudinal influence on insect–plant interactions in forest ecosystems, we examined the insect herbivore Cheilosia fasciata (Diptera: Syrphidae) and its hostplant ramsons Allium ursinum. We studied the influence of altitude, leaf cover density of the host plant, host plant patch size, solar radiation and forest type on C. fasciata. We investigated 0.5 × 0.5 m quadrats in patches of ramsons over several altitudinal gradients across Slovenia. The abundance of C. fasciata increased with altitude, while this pattern was not observed in ramsons. Temperature negatively affected abundance. The leaf cover density of the host plant influenced insect abundance positively only when leaf densities were low. Solar radiation had a positive effect on abundance. Forest type and host plant patch size were less important. The results are discussed in the context of mechanisms affecting altitudinal distribution and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso C (1999) Variation in herbivory by Yponomeuta mahalebella on its only host plant Prunus mahaleb along an elevational gradient. Ecol Entomol 24:371–379. doi:10.1046/j.1365-2311.1999.00211.x

    Article  Google Scholar 

  • ARSO (2013) Povprečna temperatura zraka za obdobje 1981–2010: 12 mesečnih kart in 1 letna karta v digitalni rasterski obliki z ločljivostjo 1 km. Agencija Republike Slovenije za okolje, Urad za meteorologijo, Ljubljana

    Google Scholar 

  • Ashton S, Gutierrez D, Wilson RJ (2009) Effects of temperature and elevation on habitat use by a rare mountain butterfly: implications for species responses to climate change. Ecol Entomol 34:437–446. doi:10.1111/j.1365-2311.2008.01068.x

    Article  Google Scholar 

  • Bale JS et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Barton K (2013) MuMIn: multi-model inference. R package version 1.9.5

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4, R package version 1.1.7

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, London

    Google Scholar 

  • Ceglar A, Rakovec J (2014) Climate projections for the Sava River Basin. In: Milačič R, Scancar J, Paunović M (eds) The Sava River. Springer, Dordrecht

    Google Scholar 

  • Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026. doi:10.1126/science.1206432

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen T (2008) Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop Entomol 40:155–163

    Article  Google Scholar 

  • Dormann CF et al (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. doi:10.1111/j.1600-0587.2012.07348.x

    Google Scholar 

  • Franco AMA et al (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob Change Biol 12:1545–1553. doi:10.1111/j.1365-2486.2006.01180.x

    Article  Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Hill JK, Hodkinson ID (1995) Effects of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera, Psylloidae) on dwarf willow (Salix lapponum) in Norway. Ecol Entomol 20:237–244. doi:10.1111/j.1365-2311.1995.tb00453.x

    Article  Google Scholar 

  • Hill JK, Hamer KC, Hodkinson ID (1998) Variation in resource exploitation along an altitudinal gradient: the willow psyllids (Cacopsylla spp.) on Salix lapponum. Ecography 21:289–296. doi:10.1111/j.1600-0587.1998.tb00566.x

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513. doi:10.1017/s1464793105006767

    Article  PubMed  Google Scholar 

  • Hodkinson ID, Bird J, Miles JE, Bale JS, Lennon JJ (1999) Climatic signals in the life histories of insects: the distribution and abundance of heather psyllids (Strophingia spp.) in the UK. Funct Ecol 13:83–95

    Article  Google Scholar 

  • Hövemeyer K (1987) The population dynamics of Cheilosia fasciata (Diptera, Syrphidae): significance of environmental factors and behavioral adaptations in a phytophagous insect. Oecologia 73:537–542

    Article  Google Scholar 

  • Hövemeyer K (1992) Population studies of Cheilosia fasciata (Diptera: Syrphidae), a leaf miner of Allium ursinum. Ecol Entomol 17:331–337

    Article  Google Scholar 

  • Hövemeyer K (1995) Throphic links, nutrient fluxes, and natural history in the Allium ursinum food web, with particular reference to life history traits of two hoverfly herbivores (Diptera: Syrphidae). Oecologia 102:86–94

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kastelec D, Rakovec J, Zakšek K, Medved S (2007) Sončna energija v Sloveniji. Založba ZRC, ZRC SAZU, Ljubljana

    Google Scholar 

  • Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Glob Ecol Biogeogr 12:403–410. doi:10.1046/j.1466-822X.2003.00053.x

    Article  Google Scholar 

  • Korner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574. doi:10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  • McClure MS (1985) Patterns of abundance, survivorship and fecundity of Nuculaspis tsugae (Homoptera: Diapsididae) on Tsuga species in Japan in relation to elevation. Environ Entomol 14:413–415

    Article  Google Scholar 

  • Niemela P, Rousi M, Saarenmaa H (1987) Topographical delimitation of Neodiprion sertifer (Hym, Diprionidae) outbreaks in scots pine in relation to needle quality. J Appl Entomol 103:84–91

    Article  Google Scholar 

  • Parmesan C et al (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583. doi:10.1038/21181

    Article  CAS  Google Scholar 

  • QGIS Development Team (2009) QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org

  • Randall MGM (1982) The dynamics of an insect population throughout its altitudinal distribution: Coleophora alticolella (Lepidoptera) in Northern England. J Anim Ecol 51:993–1016

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Scheidel U, Rohl S, Bruelheide H (2003) Altitudinal gradients of generalist and specialist herbivory on three montane Asteraceae Acta Oecologica-International. J Ecol 24:275–283. doi:10.1016/j.actao.2003.09.004

    Google Scholar 

  • Schmid U, Grossmann A (1998) Larven der Schwebfliege Cheilosia fasciata Schiner & Egger, 1853 (Diptera, Syrphidae) in Allermannsharnisch (Allium victorialis L.). Volucella 3:157–160

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2004) Insect–plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Schweiger O et al (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob Ecol Biogeogr 21:88–99. doi:10.1111/j.1466-8238.2010.00607.x

    Article  Google Scholar 

  • Speight MCD (2012) Species accounts of European Syrphidae (Diptera) vol 69. Syrph the Net, the database of European Syrphidae. Syrph the Net publications, Dublin

    Google Scholar 

  • Suhonen J, Suutari E, Kaunisto KM, Krams I (2013) Patch area of macrophyte Stratioites aloides as a critical resource for declining dragonfly Aeshna viridis. J Insect Conserv 17:393–398. doi:10.1007/s10841-012-9521-0

    Google Scholar 

  • Suzuki S (1998) Leaf phenology, seasonal changes in leaf quality and herbivory pattern of Sanguisorba tenuifolia at different altitudes. Oecologia 117:169–176

    Article  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416. doi:10.1016/j.tree.2006.05.012

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363. doi:10.1111/j.1461-0248.2008.01250.x

    Article  PubMed  Google Scholar 

  • Van Asch M, Visser ME (2007) Phenology of forest caterpillars and their host trees: the importance of synchrony. Annu Rev Entomol 52:37–55

    Article  PubMed  Google Scholar 

  • Warren RJ, Chick L (2013) Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Glob Change Biol 19:2082–2088. doi:10.1111/gcb.12169

    Article  Google Scholar 

  • Wilson RJ, Maclean IMD (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268. doi:10.1007/s10841-010-9342-y

    Article  Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Monserrat VJ (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob Change Biol 13:1873–1887. doi:10.1111/j.1365-2486.2007.01418.x

    Article  Google Scholar 

  • Yang SY, Ruuhola T, Haviola S, Rantala MJ (2007) Temperature as a modifier of plant–herbivore interaction. J Chem Ecol 33:463–475. doi:10.1007/s10886-006-9239-0

    Article  CAS  PubMed  Google Scholar 

  • Zakšek K, Podobnikar T, Oštir K (2005) Solar radiation modelling. Comput Geosci 31:233–240. doi:10.1016/j.cageo.2004.09.018

    Article  Google Scholar 

  • Zuur A, Ieno E, Walker N, Savelie A, Smith G (2009) Mixed effect models and extensions in ecology with R. Statistics for biology and health. Springer, New York

    Book  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi:10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by the Slovenian Research Agency and by the Ministry of Agriculture & Environment of the Republic of Slovenia through research program P4-0107. We are grateful to T. Skrbinšek, N. Razen, M. Krofel, J. Polajnar, R. Luštrik, D. Bordjan and the students who helped us with fieldwork, and K. Zakšek for providing the solar radiation data. Furthermore, we would like to thank R. Ceulemans, T. Skrbinšek, M. Krofel, T. Nagel, F. Gilbert and two anonymous reviewers for constructive suggestions, which have greatly improved the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten de Groot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Groot, M., Kogoj, M. Temperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its range. J Insect Conserv 19, 891–899 (2015). https://doi.org/10.1007/s10841-015-9806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-015-9806-1

Keywords

Navigation