Skip to main content

Advertisement

Log in

Using species distribution models for IUCN Red Lists of threatened species

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Red Lists have been used for years globally and regionally in many countries to highlight species that need special attention because of the rarity or rapid decline of their populations. To ensure homogenized classification at the global and regional level, the International Union for Conservation of Nature (IUCN) defined categories of threat, and criteria to attribute the taxa to these categories. Nevertheless, the strict application of the criteria is not always straightforward, especially for invertebrates, because of the difficulties associated with precise estimates of the size and viability of their populations. This paper presents a method for the estimation of extent of occurrence (EOO) and area of occupancy (AOO) based on species distribution models using multivariate adaptive regression splines. To achieve this, presence data have been modeled against topographical and climatic explanatory variables. Predictions from the statistical distribution models have then been cut using the minimal convex hull around (EOO) or the watersheds in which (AOO) the species have really been observed in recent years. This allows us to delimit the EOO and AOO according to the IUCN criteria, and better take into account the ecological requirements of the species. Furthermore, the method allows for the use of historical data (e.g. from museum’s collections) and the direct comparison of historical and recent distributions of species. The method has been tested on six species of butterflies. The results show the possibility of using species distribution models to define the Red Lists status according to the IUCN guidelines, and shows that the results are consistent with previous Red Lists assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Austin MP (1980) Searching for a model for use in vegetation analysis. Vegetatio 42:11–21

    Article  Google Scholar 

  • Austin MP (1999) A silent clash of paradigms: some inconsistencies in community ecology. Oikos 86(1):170–178

    Article  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Cantor SB, Sun CC, Tortolero-Luna G, Richards-Kortum R, Follen M (1999) A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J Clin Epidemiol 52(9):885–892. doi:10.1016/S0895-4356(99)00075-X

    Article  CAS  PubMed  Google Scholar 

  • Cardoso P, Borges PAV, Triantis KA, Ferrández MA, Martin JL (2011) Adapting the IUCN Red List criteria for invertebrates. Biol Conserv 144:2432–2440

    Article  Google Scholar 

  • Cassini MH (2011) Ranking threats using species distribution models in the IUCN Red List assessment process. Biodivers Conserv 20:3689–3692

    Article  Google Scholar 

  • Duelli P (1994) Liste rouge des espèces animales menacées de Suisse. Federal office of environment, forest and landscape, Bern

  • Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13(3):265–275. doi:10.1111/j.1472-4642.2007.00340.x

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Townsend Peterson A, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • FOWG (2001) Hydrological Atlas of Switzerland. Federal Office for Water and Geology, Swiss Hydrological Survey, Bern, Switzerland

  • Fox R, Warren MS, Brereton TM, Roy DB, Robinson A (2011) A new Red List of British butterflies. Insect Conserv Divers 4:159–172

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  Google Scholar 

  • Gardenfors U, Hilton-Taylor C, Mace GM, Rodriguez JP (2001) The application of IUCN Red List criteria at regional levels. Conserv Biol 15(5):1206–1212

    Article  Google Scholar 

  • Gonseth Y (1994) Liste rouge des lépidoptères diurnes menacés de Suisse. In: Duelli P (ed) Liste rouge des espèces animales menacées de Suisse. Office fédéral de l’environnement, des forêts et du paysage, Berne

  • Gonseth Y, Monnerat C (2002) Liste Rouge des Libellules menacées en Suisse. Office fédéral de l’environnement, des forêts et du paysage, Berne et Centre suisse de cartographie de la faune, Neuchâtel

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19(9):497–503. doi:10.1016/j.tree.2004.07.006

    Article  PubMed  Google Scholar 

  • Graham CH, VanDerWal J, Phillips SJ, Moritz C, Williams SE (2010) Dynamic refugia and species persistence: tracking spatial shifts in habitat trough time. Ecography 33:1062–1069

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Hastie TJ, Tibshirani R (1990) Generalized additive models. Chapman and Hall, London

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman JH (2001) The elements of statistical learning. Springer Series in Statistics, Springer

    Book  Google Scholar 

  • Hastie T, Tibshirani R, Leisch F, Hornik K, Ripley BD (2011) mda: Mixture and flexible discriminant analysis

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–442

    Article  Google Scholar 

  • IUCN (2001) IUCN Red List categories and criteria: version 3.1. IUCN Species Survival Commission, Gland, Switzerland/Cambridge, UK

  • IUCN (2003) Guidelines for application of IUCN Red List criteria at regional levels: version 3.0. IUCN Species Survival Commission, Gland, Switzerland/Cambridge, UK

  • Keller V, Zbinden N, Schmid H, Volet B (2001) Liste rouge des espèces menacées de Suisse. oiseaux nicheurs. Office fédéral de l’environnement, des forêts et du paysage (OFEFP), Berne, et Station ornithologique suisse, Sempach

  • Kéry M (2011) Towards the modelling of true species distributions. J Biogeogr 38:617–618

    Article  Google Scholar 

  • Kéry M, Gardner B, Monnerat C (2010) Predicting species distributions from checklist data using site-occupancy models. J Biogeogr 37:1851–1862

    Google Scholar 

  • Kirchhofer A, Breitenstein M, Zaugg B (2007) Liste rouge poissons et cyclostomes—Liste rouge des espèces menacées en Suisse. Office fédéral de l’environnement, Berne et Centre suisse de cartographie de la faune, Neuchâtel

    Google Scholar 

  • Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribution Atlas of butterflies in Europe. Gesellschaft für Schmetterlingsschutz e.V., Halle

    Google Scholar 

  • Leathwick JR, Rowe D, Richardson J, Elith J, Hastie T (2005) Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw Biol 50(12):2034–2052. doi:10.1111/j.1365-2427.2005.01448.x

    Article  Google Scholar 

  • Leathwick JR, Elith J, Hastie T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199(2):188–196. doi:10.1016/j.ecolmodel.2006.05.022

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lütolf M, Kienast F, Guisan A (2006) The ghost of past species occurrence: improving species distribution models for presence-only data. J Appl Ecol 43:802–815

    Article  Google Scholar 

  • Mace GM, Lande R (1991) Assessing extinction threats: toward a reevaluation of IUCN threatened species categories. Conserv Biol 5(2):148–157. doi:10.1111/j.1523-1739.1991.tb00119.x

    Article  Google Scholar 

  • Mace GM, Collar NJ, Gaston KJ, Hilton-Taylor C, AkÇAkaya HR, Leader-Williams N, Milner-Gulland EJ, Stuart SN (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv Biol 22(6):1424–1442. doi:10.1111/j.1523-1739.2008.01044.x

    Article  PubMed  Google Scholar 

  • Maes D, Titeux N, Hortal J, Anselin A, Decleer K, Knijf GD, Fichefet V, Luoto M (2010) Predicted insect diversity declines under climate change in an already impoverished region. J Insect Conserv 14:485–498

    Article  Google Scholar 

  • Maes D, Vanreusel W, Jacobs I, Berwaerts K, Dyck HV (2012) Applying IUCN Red List criteria to a small regional level: a test case with butterflies in Flanders (north Belgium). Biol Conserv 145:258–266

    Article  Google Scholar 

  • Margules CR, Austin MP (1994) Biological models for monitoring species decline: the construction and use of data bases. Philos Trans R Soc Lond B 344:69–75

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Monographs on statistics and applied probability. Chapman and Hall, London

    Book  Google Scholar 

  • Moisen GG, Frescino TS (2002) Comparing five modelling techniques for predicting forest characteristics. Ecol Model 157:209–225

    Article  Google Scholar 

  • Monnerat C, Thorens P, Walther T, Gonseth Y (2007) Liste rouge des Orthoptères menacés de Suisse. Office fédéral de l’environnement, Berne et Centre suisse de cartographie de la faune, Neuchâtel

    Google Scholar 

  • Monney J-C, Meyer A (2005) Liste Rouge des reptiles menacés en Suisse. Office fédéral de l’environnement, des forêts et du paysage, Berne, et Centre de coordination pour la protection des amphibiens et des reptiles de Suisse, Berne

  • Pellet J, Bried JT, Parietti D, Gander A, Heer PO, Cherix D, Arlettaz R (2012) Monitoring butterfly abundance: beyond pollard walks. PLoS One 7(7):e41396. doi:10.1371/journal.pone.0041396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. Vienna, Austria

  • Schmidt BR, Zumbach S (2005) Liste Rouge des amphibiens menacés en Suisse. Office fédéral de l’environnement, des forêts et du paysage (OFEFP), Berne, et Centre de coordination pour la protection des amphibiens et des reptiles de Suisse (KARCH), Berne

  • Sérgio C, Figueira R, Draper D, Menezes R, Sousa AJ (2007) Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biolog Conserv 135(3):341–351. doi:10.1016/j.biocon.2006.10.018

    Article  Google Scholar 

  • Settele J, Kudrna O, Harpke A, Kuehn I, van Swaay C, Verovnik R, Warren M, Wiemers M, Hanspach J, Hickler T, Kuehn E, van Halder I, Veling K, Vliegenthart A, Wynhoff I, Schweiger O (2008) Climatic risk Atlas of European butterflies. Pensoft Publishers, Sofia

  • Svenning J-C, Fitzpatrick MC, Normand S, Graham CH, Pearman PB, Iverson LR, Skov F (2010) Geography, topography, and history affect realized-to-potential tree species richness in Europe. Ecography 33:1070–1080

    Article  Google Scholar 

  • Swaay CV, Maes D, Collins S, Munguira ML, Šašić M, Settele J, Verovnik R, Warren M, Wiemers M, Wynhoff I, Cuttelod A (2011) Applying IUCN criteria to invertebrates: How red is the Red List of European butterflies. Biol Conserv 144:470–478

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148. http://www.nature.com/nature/journal/v427/n6970/suppinfo/nature02121_S1.html

  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice C (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102(23):8245–8250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaclavik T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Wermeille E, Chittaro Y, Gonseth Y (2013) Liste rouge Papillons diurnes et Zygènes. Espèces menacées en Suisse, état 2012 (in prep)

  • Zimmermann NE, Edwards TC Jr, Graham CH, Pearman PB, Svenning J-C (2010) New trends in species distribution modelling. Ecography 33:985–989

    Article  Google Scholar 

  • Zweig MH, Campbell G (1993) Receiver-operating characteristics (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the staff from the Centre suisse de cartographie de la faune, especially Jessica Litman, Benedikt Schmidt and Yannick Chittaro for their useful comments on the manuscript. Finally, we would like to thank all the people that sent the data from their fieldwork. This is a critical contribution to the conservation of butterflies in Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien P. Fivaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fivaz, F.P., Gonseth, Y. Using species distribution models for IUCN Red Lists of threatened species. J Insect Conserv 18, 427–436 (2014). https://doi.org/10.1007/s10841-014-9652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9652-6

Keywords

Navigation