Skip to main content
Log in

Left atrial volume affects the correlation of voltage map with magnetic resonance imaging

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Background

The low-voltage area detected by electroanatomic mapping (EAM) is a surrogate marker of left atrial fibrosis. However, the correlation between the EAM and late gadolinium enhancement magnetic resonance imaging (LGE-MRI) has been inconsistent among studies. This study aimed to investigate how LA size affects the correlation between EAM and LGE-MRI.

Methods

High-density EAMs of the LA during sinus rhythm were collected in 22 patients undergoing AF ablation. The EAMs were co-registered with pre-ablation LGE-MRI models. Voltages in the areas with and without LGE were recorded. Left atrial volume index (LAVI) was calculated from MRI, and LAVI > 62 ml/m2 was defined as significant LA enlargement (LAE).

Results

Atrial bipolar voltage negatively correlates with the left atrial volume index. The median voltages in areas without LGE were 1.1 mV vs 2.0 mV in patients with vs without significant LAE (p = 0.002). In areas of LGE, median voltages were 0.4 mV vs 0.8 mV in patients with vs without significant LAE (p = 0.02). A voltage threshold of 1.7 mV predicted atrial LGE in patients with normal or mildly enlarged LA (sensitivity and specificity of 74% and 59%, respectively). In contrast, areas of voltage less than 0.75 mV correlated with LGE in patients with significant LA enlargement (sensitivity 68% and specificity 66%).

Conclusions

LAVI affects left atrial bipolar voltage, and the correlation between low-voltage areas and LGE-MRI. Distinct voltage thresholds according to the LAVI value might be considered to identify atrial scar by EAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Tzeis S, Asvestas D, Vardas P. Atrial fibrosis: translational considerations for the management of AF patients. Arrhythm Electrophysiol Rev. 2019;8:37–41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, Odim J, Laks H, Sen L. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. 2004;109:363–8.

    Article  CAS  PubMed  Google Scholar 

  3. Marrouche NF, Wilber D, Hindricks G, Jais P, Akoum N, Marchlinski F, Kholmovski E, Burgon N, Hu N, Mont L, Deneke T, Duytschaever M, Neumann T, Mansour M, Mahnkopf C, Herweg B, Daoud E, Wissner E, Bansmann P, Brachmann J. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study. JAMA. 2014;311:498–506.

    Article  CAS  PubMed  Google Scholar 

  4. Spragg DD, Khurram I, Zimmerman SL, Yarmohammadi H, Barcelon B, Needleman M, Edwards D, Marine JE, Calkins H, Nazarian S. Initial experience with magnetic resonance imaging of atrial scar and co-registration with electroanatomic voltage mapping during atrial fibrillation: success and limitations. Heart Rhythm. 2012;9:2003–9.

    Article  PubMed  Google Scholar 

  5. Qureshi NA, Kim SJ, Cantwell CD, Afonso VX, Bai W, Ali RL, Shun-Shin MJ, Malcolme-Lawes LC, Luther V, Leong KMW, Lim E, Wright I, Nagy S, Hayat S, Ng FS, Wing MK, Linton NWF, Lefroy DC, Whinnett ZI, Davies DW, Kanagaratnam P, Peters NS, Lim PB. Voltage during atrial fibrillation is superior to voltage during sinus rhythm in localizing areas of delayed enhancement on magnetic resonance imaging: an assessment of the posterior left atrium in patients with persistent atrial fibrillation. Heart Rhythm. 2019;16:1357–67.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zghaib T, Keramati A, Chrispin J, Huang D, Balouch MA, Ciuffo L, Berger RD, Marine JE, Ashikaga H, Calkins H, Nazarian S, Spragg DD. Multimodal examination of atrial fibrillation substrate: correlation of left atrial bipolar voltage using multi-electrode fast automated mapping, point-by-point mapping, and magnetic resonance image intensity ratio. JACC Clin Electrophysiol. 2018;4:59–68.

    Article  PubMed  Google Scholar 

  7. Malcolme-Lawes LC, Juli C, Karim R, Bai W, Quest R, Lim PB, Jamil-Copley S, Kojodjojo P, Ariff B, Davies DW, Rueckert D, Francis DP, Hunter R, Jones D, Boubertakh R, Petersen SE, Schilling R, Kanagaratnam P, Peters NS. Automated analysis of atrial late gadolinium enhancement imaging that correlates with endocardial voltage and clinical outcomes: a 2-center study. Heart Rhythm. 2013;10:1184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Arentz T, Cochet H, Muller-Edenborn B, Kim S, Moreno-Weidmann Z, Minners J, Kohl P, Lehrmann H, Allgeier J, Trenk D, Hocini M, Jais P, Haissaguerre M, Jadidi A. Extent and spatial distribution of left atrial arrhythmogenic sites, late gadolinium enhancement at magnetic resonance imaging, and low-voltage areas in patients with persistent atrial fibrillation: comparison of imaging vs. electrical parameters of fibrosis and arrhythmogenesis. Europace. 2019;21:1484–93.

    Article  PubMed  Google Scholar 

  9. Caixal G, Alarcon F, Althoff TF, Nunez-Garcia M, Benito EM, Borras R, Perea RJ, Prat-Gonzalez S, Garre P, Soto-Iglesias D, Gunturitz C, Cozzari J, Linhart M, Tolosana JM, Arbelo E, Roca-Luque I, Sitges M, Guasch E, Mont L. Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity. Europace. 2021;23:380–8.

    Article  PubMed  Google Scholar 

  10. Khan MA, Yang EY, Zhan Y, Judd RM, Chan W, Nabi F, Heitner JF, Kim RJ, Klem I, Nagueh SF, Shah DJ. Association of left atrial volume index and all-cause mortality in patients referred for routine cardiovascular magnetic resonance: a multicenter study. J Cardiovasc Magn Reson. 2019;21:4.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haldar SK, Magtibay K, Porta-Sanchez A, Masse S, Mitsakakis N, Lai PFH, Azam MA, Asta J, Kusha M, Dorian P, Ha ACT, Chauhan V, Deno DC and Nanthakumar K. Resolving bipolar electrogram voltages during atrial fibrillation using omnipolar mapping. Circ Arrhythm Electrophysiol. 2017;10.

  12. Park J, Joung B, Uhm JS, Young Shim C, Hwang C, Hyoung Lee M, Pak HN. High left atrial pressures are associated with advanced electroanatomical remodeling of left atrium and independent predictors for clinical recurrence of atrial fibrillation after catheter ablation. Heart Rhythm. 2014;11:953–60.

    Article  PubMed  Google Scholar 

  13. Lin Y, Yang B, Garcia FC, Ju W, Zhang F, Chen H, Yu J, Li M, Gu K, Cao K, Callans DJ, Marchlinski FE, Chen M. Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation. J Interv Card Electrophysiol. 2014;39:57–67.

    Article  PubMed  Google Scholar 

  14. Hansen BJ, Zhao J, Fedorov VV. Fibrosis and atrial fibrillation: computerized and optical mapping; a view into the human atria at submillimeter resolution. JACC Clin Electrophysiol. 2017;3:531–46.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuo L, Zado E, Frankel D, Santangelli P, Arkles J, Han Y, Marchlinski FE, Nazarian S, Desjardins B. Association of left atrial high-resolution late gadolinium enhancement on cardiac magnetic resonance with electrogram abnormalities beyond voltage in patients with atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13:e007586.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Clarnette JA, Brooks AG, Mahajan R, Elliott AD, Twomey DJ, Pathak RK, Kumar S, Munawar DA, Young GD, Kalman JM, Lau DH, Sanders P. Outcomes of persistent and long-standing persistent atrial fibrillation ablation: a systematic review and meta-analysis. Europace. 2018;20:f366–76.

    Article  PubMed  Google Scholar 

  17. Marrouche NF, Wazni O, McGann C, Greene T, Dean JM, Dagher L, Kholmovski E, Mansour M, Marchlinski F, Wilber D, Hindricks G, Mahnkopf C, Wells D, Jais P, Sanders P, Brachmann J, Bax JJ, Morrison-de Boer L, Deneke T, Calkins H, Sohns C, Akoum N, Investigators DI. Effect of MRI-guided fibrosis ablation vs conventional catheter ablation on atrial arrhythmia recurrence in patients with persistent atrial fibrillation: the DECAAF II randomized clinical trial. JAMA. 2022;327:2296–305.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ng FS, Handa BS, Li X, Peters NS. Toward mechanism-directed electrophenotype-based treatments for atrial fibrillation. Front Physiol. 2020;11:987.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Reddy VY, Anic A, Koruth J, Petru J, Funasako M, Minami K, Breskovic T, Sikiric I, Dukkipati SR, Kawamura I, Neuzil P. Pulsed field ablation in patients with persistent atrial fibrillation. J Am Coll Cardiol. 2020;76:1068–80.

    Article  PubMed  Google Scholar 

  20. Artang R, Migrino RQ, Harmann L, Bowers M, Woods TD. Left atrial volume measurement with automated border detection by 3-dimensional echocardiography: comparison with magnetic resonance imaging. Cardiovasc Ultrasound. 2009;7:16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassir F. Marrouche.

Ethics declarations

Ethical approval

This is a retrospective data collection from procedures performed at our center. The study was approved by the Institutional Review Board of our institution.

Informed consent

Informed consent was not required for the study. Data was obtained from a de-identified database.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D.L., Hajjar, A.H.E., Ayoub, T. et al. Left atrial volume affects the correlation of voltage map with magnetic resonance imaging. J Interv Card Electrophysiol 67, 263–271 (2024). https://doi.org/10.1007/s10840-023-01522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-023-01522-y

Keywords

Navigation