Skip to main content

Advertisement

Log in

MiRNA21 and IL-18 levels in left atrial blood in patients with atrial fibrillation undergoing cryoablation and their predictive value for recurrence of atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Purpose

The recurrence of atrial fibrillation (AF) after cryoablation still needs to be prioritized, including discriminating predictive indicators.

Methods

Eighty-seven patients aged 43–83 years who underwent cryo-balloon ablation were divided into paroxysmal atrial fibrillation (PAF) and non-paroxysmal atrial fibrillation (non-PAF) groups. Baseline data, intraoperative index, and miRNA21, IL-18, NLRP3, and visfatin levels in peripheral venous blood and left atrial blood were assessed. Follow-up was performed for 6 months to observe the recurrence of AF. A Cox risk ratio model was used to analyze indicators for predicting AF recurrence.

Results

The non-PAF and PAF group recurrence rates of AF were statistically different (p < 0.05) at 9/22 (40.9%) and 11/65 (16.9%), respectively. Biomarker levels in the left atrial blood were higher in the non-PAF group than in the PAF group (p < 0.05). The effects of non-PAF and levels of miRNA21 and IL-18 in left atrial serum on the recurrence of AF after cryoablation statistically differed (p < 0.05).

Conclusion

The levels of miRNA21 and IL-18 were higher in left atrial blood than in peripheral blood, which may be related to the severity of AF and recurrence of AF after cryoablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Simantirakis EN, Papakonstantinou PE, Kanoupakis E, Chlouverakis GI, Tzeis S, Vardas PE. Recurrence rate of atrial fibrillation after the first clinical episode: a prospective evaluation using continuous cardiac rhythm monitoring. Clin Cardiol. 2018;41:594–600.

    Article  Google Scholar 

  2. Kirchhof P, Camm AJ, Goette A, Brandes A, Eckardt L, Elvan A, Fetsch T, van Gelder IC, Haase D, Haegeli LM, Hamann F, Heidbüchel H, Hindricks G, Kautzner J, Kuck KH, Mont L, Ng GA, Rekosz J, Schoen N, Schotten U, Suling A, Taggeselle J, Themistoclakis S, Vettorazzi E, Vardas P, Wegscheider K, Willems S, Crijns HJGM, Breithardt G. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020;383:1305–16.

    Article  Google Scholar 

  3. Andrade JG, Aguilar M, Atzema C, Bell A, Cairns JA, Cheung CC, Cox JL, Dorian P, Gladstone DJ, Healey JS, Khairy P, Leblanc K, McMurtry MS, Mitchell LB, Nair GM, Nattel S, Parkash R, Pilote L, Sandhu RK, Sarrazin JF, Sharma M, Skanes AC, Talajic M, Tsang TSM, Verma A, Verma S, Whitlock R, Wyse DG, Macle L. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society comprehensive guidelines for the management of atrial fibrillation. Can J Cardiol. 2020;36:1847–8.

    Article  Google Scholar 

  4. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42:373–498.

    Article  Google Scholar 

  5. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC Jr, Ellinor PT, Ezekowitz MD, Field ME, Furie KL, Heidenreich PA, Murray KT, Shea JB, Tracy CM, Yancy CW. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in collaboration with the Society of Thoracic Surgeons. Circulation. 2019;140:e125–51.

    Article  Google Scholar 

  6. Packer DL, Mark DB, Robb RA, Monahan KH, Bahnson TD, Poole JE, Noseworthy PA, Rosenberg YD, Jeffries N, Mitchell LB, Flaker GC, Pokushalov E, Romanov A, Bunch TJ, Noelker G, Ardashev A, Revishvili A, Wilber DJ, Cappato R, Kuck KH, Hindricks G, Davies DW, Kowey PR, Naccarelli GV, Reiffel JA, Piccini JP, Silverstein AP, Al-Khalidi HR, Lee KL. Effect of catheter ablation vs antiarrhythmic drug therapy on mortality, stroke, bleeding, and cardiac arrest among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA. 2019;321:1261–74.

    Article  CAS  Google Scholar 

  7. Chew DS, Black-Maier E, Loring Z, Noseworthy PA, Packer DL, Exner DV, Mark DB, Piccini JP. Diagnosis-to-ablation time and recurrence of atrial fibrillation following catheter ablation: a systematic review and metaanalysis of observational studies. Circ Arrhythm Electrophysiol. 2020;13:e008128.

    Article  Google Scholar 

  8. Kuck KH, Lebedev DS, Mikhaylov EN, Romanov A, Gellér L, Kalējs O, Neumann T, Davtyan K, On YK, Popov S, Bongiorni MG, Schlüter M, Willems S, Ouyang F. Catheter ablation or medical therapy to delay progression of atrial fibrillation: the randomized controlled atrial fibrillation progression trial (ATTEST). Europace. 2021;23:362–9.

    Article  Google Scholar 

  9. Wazni OM, Dandamudi G, Sood N, Hoyt R, Tyler J, Durrani S, Niebauer M, Makati K, Halperin B, Gauri A, Morales G, Shao M, Cerkvenik J, Kaplon RE, Nissen SE. Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021;384:316–24.

    Article  CAS  Google Scholar 

  10. Andrade JG, Wells GA, Deyell MW, Bennett M, Essebag V, Champagne J, Roux JF, Yung D, Skanes A, Khaykin Y, Morillo C, Jolly U, Novak P, Lockwood E, Amit G, Angaran P, Sapp J, Wardell S, Lauck S, Macle L, Verma A. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021;384:305–15.

    Article  CAS  Google Scholar 

  11. Schmidt B, Brugada J, Arbelo E, Laroche C, Bayramova S, Bertini M, Letsas KP, Pison L, Romanov A, Scherr D, Tilz RR, Maggioni A, Adragao P, Lund J, Haman L, Oliveira MM, Dagres N. Ablation strategies for different types of atrial fibrillation in Europe: results of the ESC-EORP EHRA Atrial Fibrillation Ablation Long-Term registry. Europace. 2020;22:558–66.

    Article  Google Scholar 

  12. Maier J, Blessberger H, Nahler A, Hrncic D, Fellner A, Reiter C, Hönig S, Schmit P, Fellner F, Lambert T, Steinwender C. Cardiac computed tomography-derived left atrial volume index as a predictor of long-term success of cryo-ablation in patients with atrial fibrillation. Am J Cardiol. 2021;140:69–77.

    Article  Google Scholar 

  13. Manfrin M, Mugnai G, Chierchia GB, De Asmundis C, Bilato C, Rauhe W. Left atrial hypertension invasively measured during pulmonary vein isolation predicts atrial fibrillation recurrence. Minerva Cardioangiol. 2020; https://doi.org/10.23736/S0026-4725.20.05418-3.

  14. Kim S, Kim YR, Nam GB, Choi KJ, Kim YH. The shape of the left lateral ridge as a predictor of long-term outcome of catheter ablation for atrial fibrillation based on clinical and experimental data. Int J Cardiol. 2021;329:91–8.

    Article  Google Scholar 

  15. Kong Q, Shi L, Yu R, Long D, Zhang Y, Chen Y, Li J. Biatrial enlargement as a predictor for reablation of atrial fibrillation. Int J Med Sci. 2020;17:3031–8.

    Article  Google Scholar 

  16. Zhou Q, Maleck C, von Ungern-Sternberg SNI, Neupane B, Heinzmann D, Marquardt J, Duckheim M, Scheckenbach C, Stimpfle F, Gawaz M, Schreieck J, Seizer P, Gramlich M. Circulating microRNA-21 correlates with left atrial low-voltage areas and is associated with procedure outcome in patients undergoing atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2018. https://doi.org/10.1161/CIRCEP.118.006242.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yao C, Veleva T, Scott L Jr, Cao S, Li L, Chen G, Jeyabal P, Pan X, Alsina KM, Dr Abu-Taha I, Ghezelbash S, Reynolds CL, Shen YH, LeMaire SA, Schmitz W, Müller FU, El-Armouche A, Tony Eissa N, Beeton C, Nattel S, Wehrens XHT, Dobrev D, Li N. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138:2227–42.

    Article  CAS  Google Scholar 

  18. Li N, Brundel BJJM. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation. Circ Res. 2020;127:73–90.

    Article  CAS  Google Scholar 

  19. Platek AE, Szymanska A, Kalaszczynska I, Szymanski FM, Sierdzinski J, Filipiak KJ. Usefulness of visfatin as a predictor of atrial fibrillation recurrence after ablation procedure. Am J Cardiol. 2020;125:415–9.

    Article  CAS  Google Scholar 

  20. Maida CD, Vasto S, Di Raimondo D, Casuccio A, Vassallo V, Daidone M, Del Cuore A, Pacinella G, Cirrincione A, Simonetta I, Della Corte V, Rizzica S, Geraci G, Tuttolomondo A, Pinto A. Inflammatory activation and endothelial dysfunction markers in patients with permanent atrial fibrillation: a cross-sectional study. Aging (Albany NY). 2020;12:8423–33.

    Article  CAS  Google Scholar 

  21. Kiliszek M, Maciak K, Maciejak A, Krzyżanowski K, Wierzbowski R, Gora M, Burzynska B, Segiet A, Skrobowski A. Serum microRNA in patients undergoing atrial fibrillation ablation. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-61322-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yuan S, Lin A, He QQ, Burgess S, Larsson SC. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: a two-sample Mendelian randomization study. Int J Cardiol. 2020;313:99–104.

    Article  Google Scholar 

  23. Wijesurendra RS, Casadei B. Mechanisms of atrial fibrillation. Heart. 2019;105:1860–7.

    Article  CAS  Google Scholar 

  24. van Marion DMS, Ramos KS, Bulte LB, Bogers AJJC, de Groot NMS, Brundel BJJM. Atrial heat shock protein levels are associated with early postoperative and persistence of atrial fibrillation. Heart Rhythm. 2021;18:1790–8.

    Article  Google Scholar 

  25. Zhang pp, Jian S, Wei L. Genome-wide profiling reveals atrial fibrillation-related circular RNAs in atrial appendages. Gene. 2020.https://doi.org/10.1016/j.gene.2019.144286.

  26. Neudecker V, Brodsky KS, Kreth S, Ginde AA, Eltzschig HK. Emerging roles for microRNAs in perioperative medicine. Anesthesiology. 2016;124:489–506.

    Article  CAS  Google Scholar 

  27. Pan JA, Lin H, Yu JY, Zhang HL, Zhang JF, Wang CQ, Gu J. MiR-21-3p inhibits adipose browning by targeting FGFR1 and aggravates atrial fibrosis in diabetes. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/9987219.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sieweke JT, Pfeffer TJ, Biber S, Chatterjee S, Weissenborn K, Grosse GM, Hagemus J, Derda AA, Berliner D, Lichtinghagen R, Hilfiker-Kleiner D, Bauersachs J, Bär C, Thum T, Bavendiek U. miR-21 and NT-proBNP correlate with echocardiographic parameters of atrial dysfunction and predict atrial fibrillation. J Clin Med. 2020. https://doi.org/10.3390/jcm9041118.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang YH, Fu L, Wang B, Li SF, Sun Z, Luan Y. Genetic variants of interleukin-18 are associated with reduced risk of atrial fibrillation in a population from Northeast China. Gene. 2017;626:269–74.

    Article  CAS  Google Scholar 

  30. Szymanska A, Platek AE, Sierdzinski J, Szymanski FM. Visfatin as a predictor of obstructive sleep apnea in atrial fibrillation patients. Sleep Breath. 2020;24:1215–8.

    Article  Google Scholar 

  31. Blessberger H, Mueller P, Makimoto H, Hauffe F, Meissner A, Gemein C, Schmitt J, Hamm C, Deneke T, Schiedat F, Mügge A, Gabriel M, Steinwender C. Association of adipocytokines serum levels with left atrial thrombus formation in atrial fibrillation patients on oral anticoagulation (Alert) - a cross-sectional study. Nutr Metab Cardiovasc Dis. 2021;31:860–8.

    Article  CAS  Google Scholar 

  32. McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab. 2005;16:469–77.

    Article  CAS  Google Scholar 

  33. Pandit SV, Anumonwo J, Jalife J. Atrial fibrillation susceptibility in obesity: an excess adiposity and fibrosis complicity? Circ Res. 2016;118:1468–71.

    Article  CAS  Google Scholar 

  34. Haemers P, Hamdi H, Guedj K, Suffee N, Farahmand P, Popovic N, Claus P, LePrince P, Nicoletti A, Jalife J, Wolke C, Lendeckel U, Jaïs P, Willems R, Hatem SN. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria. Eur Heart J. 2017;38:53–61.

    Article  CAS  Google Scholar 

  35. Anumonwo JM, Jalife J, Goldstein DR. Triple threat: adiposity, aging, atrial fibrillation. Aging (Albany NY). 2017;9:2235–6.

    Article  Google Scholar 

  36. Darabi F, Aghaei M, Movahedian A, Elahifar A, Pourmoghadas A, Sarrafzadegan N. Association of serum microRNA-21 levels with visfatin, inflammation, and acute coronary syndromes. Heart Vessels. 2017;32:549–57.

    Article  Google Scholar 

  37. Petrica L, Milas O, Vlad M, Vlad A, Gadalean F, Dumitrascu V, Velciov S, Gluhovschi C, Bob F, Ursoniu S, Jianu DC, Matusz P, Pusztai AM, Cretu O, Radu D, Secara A, Simulescu A, Stefan M, Popescu R, Vlad D. Interleukins and miRNAs intervene in the early stages of diabetic kidney disease in type 2 diabetes mellitus patients. Biomark Med. 2019;13:1577–88.

    Article  CAS  Google Scholar 

  38. Jiang R, Chen X, Ge S, Wang Q, Liu Y, Chen H, Xu J, Wu J. MiR-21-5p induces pyroptosis in colorectal cancer via TGFBI. Front Oncol Front Oncol. 2021. https://doi.org/10.3389/fonc.2020.610545.

    Article  PubMed  Google Scholar 

  39. Mehta JL, Mercanti F, Stone A, Wang X, Ding Z, Romeo F, Khaidakov M. Gene and microRNA transcriptional signatures of angiotensin II in endothelial cells. J Cardiovasc Pharmacol. 2015;65:123–9.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Clinical Fund of the Second Hospital of Tianjin Medical University (No. 2019LC01) and Key Fund of Tianjin Municipal Health Commission (No. ZC20125).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Yanhong Liu, Di Luo, Enzhao Liu, Tong Liu, Gang Xu, Meng Yuan, Yue Zhang, Xu Chen, Xinpei Chen, Shuai Miao, Wenfeng Shangguan, and Guangping Li. The first draft of the manuscript was written by Yanhong Liu and Guangping Li, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guangping Li.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Ethics Committee of the Second Hospital of Tianjin Medical University (No. 2019–009).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants

The study was performed in accordance with the Helsinki Declaration of 1975, as revised in 2000 (5), and approved by the Ethics Committee of the Second Hospital of Tianjin Medical University (No. 2019–009).

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, D., Liu, E. et al. MiRNA21 and IL-18 levels in left atrial blood in patients with atrial fibrillation undergoing cryoablation and their predictive value for recurrence of atrial fibrillation. J Interv Card Electrophysiol 64, 111–120 (2022). https://doi.org/10.1007/s10840-022-01125-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-022-01125-z

Keywords

Navigation